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We discuss a series of fluid-structure interaction simulations of an aerodynamic

tension-cone supersonic decelerator prototype intended for large mass payload deploy-

ment in planetary explorations. The fluid-structure interaction computations combine

large deformation analysis of thin-shells with large-eddy simulation of compressible tur-

bulent flows using a loosely-coupled approach to enable quantification of the dynamics

of the vehicle. The simulation results are compared with experiments carried out at

NASA Glenn Research Center. Reasonably good agreement between the simulations

and the experiment is observed throughout a deflation cycle. The simulations help to

illuminate the details of the dynamic progressive buckling of the tension-cone deceler-

ator that ultimately results in the collapse of the structure as the inflation pressure is

decreased. Furthermore, the tension-cone decelerator exhibits a transient oscillatory

behavior under impulsive loading that ultimately dies out. The frequency of these
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oscillations was determined to be related to the acoustic timescale in the compressed

subsonic region between the bow shock and the structure. As shown, when the nat-

ural frequency of the structure and the frequency of the compressed subsonic region

approximately match, the decelerator exhibits relatively large non-axisymetric oscil-

lations. The observed response appears to be a fluid-structure interaction resonance

resulting from an acoustic chamber (piston like) mode exciting the structure.

I. Introduction

The concept of the inflatable aerodynamic decelerator (IAD) was first proposed in the 1960’s

as an alternative to conventional parachute technologies for decelerating payloads during the atmo-

spheric entry phase of the entry-descent-landing (EDL) sequence of a planetary exploration mission

(see [1] for a broader history of the IAD concept). Numerous proposals and mission profiles for

use of IAD technologies have been developed for vehicle entry into the atmospheres of Earth, Mars,

Titan, and the gas giants, e.g., [2–5]. In these studies, the key advantage of the IAD is its low

mass to drag-producing area ratio, which reduces the ballistic coefficient of the entry vehicle and

increases its deceleration rate at high planetary altitudes, where atmospheric density is low. This

permits higher elevation landing sites to be considered and/or the landing of higher mass payloads.

Additionally, the resulting aerodynamic heating is reduced, enabling the use of modern lightweight

materials [6]. Preliminary experimental investigations also indicate that inflatable decelerators may

avoid the well-known instabilities encountered by supersonic parachutes for high-mass payloads in

the Mach number range of interest [7]. Together, these benefits offer a potential reduction in to-

tal mission weight and cost. But first, the complex coupled dynamics of these inflatable flexible

structures in supersonic flows must be better understood to rule out potential instabilities.

To date, the development of inflatable decelerator concepts has been largely confined to concep-

tual studies and reduced-scale, often rigid model, wind tunnel testing to investigate the fundamental

aerodynamic properties of different geometries and proposed designs. Recent Earth-atmosphere de-

scent tests [8, 9] have made a significant contribution, and further experiments are ongoing [10, 11],
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but for deployment as a mission-ready technology, a better understanding of the aerodynamics and

aeroelastic behavior of these flexible structures is needed [12]. The most relevant experimental study

to the present work is that of Clark et al. [13], where a flexible scale model was tested in a supersonic

wind tunnel under a range of flow conditions. Static aerodynamic coefficients were collected and

inflation/deflation cycles investigated. These experiments revealed drag hysteresis, where collapse of

the decelerator structure was observed at a lower inflation pressure than that at which deployment

occurred.

High-fidelity computational modeling of inflatable aerodynamic decelerators has been limited

[14, 15], due to the challenging flow regime and the complexity of coupling fluid and structural

solvers in an accurate and computationally efficient manner. Few computational results have been

published for aerodynamic decelerators in the high-speed regime [16, 17], as opposed to the lower-

speed regime, e.g., [18–21]. Recent developments in compressible turbulence modeling and structural

thin-shell modeling have led to development of new fluid-structure interaction simulation tools,

which can properly capture interactions between the flexible decelerator and its wake. Our recent

work simulating supersonic parachutes [22] laid the foundation for the present work by providing

a computational framework suitable for investigating dynamics of flexible membrane structures

undergoing large deformations in a turbulent compressible supersonic flow. IAD concepts include

a wide range of ballute geometries, but the focus of this paper will be a particular variant of

the tension-cone geometry similar to that studied in [3] and [13]. In this vehicle, a tension-cone

membrane is attached to the shoulder of the payload vehicle and supported on its outer edge by a

flexible pressurized toroid that acts as a compression ring. The shape of the tension-cone is chosen

such that the circumferential stresses are relatively small in comparison to the meridional stresses

(at zero angle of attack). Inflation of the torus initiates the deployment of the decelerator structure.

A detailed parametric study of the dynamics of a tension-cone inflatable decelerator model is

conducted in this paper using state-of-the-art fluid-structure interaction simulation. A structured

grid adaptive mesh refinement (AMR) approach is employed by the fluid dynamics solver along

with a compressible large-eddy turbulence model to accurately model the turbulent flow around the

vehicle [23]. This is coupled using a loosely-coupled staggered approach with a large-deformation
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thin-shell finite-element solver that incorporates an elastic conservative self-contact model [24–26].

The resulting fluid-structure interaction analysis tool is used to investigate the stability and aero-

dynamic behavior of the tension-cone decelerator at varying torus inflation pressures and under

different flow conditions, with particular attention given to the transient dynamics of buckling and

collapse of the decelerator and interactions with its wake. Comparison will also be made with the

experimental wind tunnel test results of [13]. Finally, we extended the simulation parameters be-

yond those used in the experiment to drive the IAD into a resonant state and investigate a unique

nonlinear fluid-structure interaction mode discovered in this device.

II. Inflatable Aerodynamic Decelerator
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Fig. 1 Closeup of the flow (a) and cross-section of tension-cone geometry (b) indicating major

dimensions of the 60 cm scale model used in [13] and the present computational study. The

capsule is a scaled-down Viking-type model, with Rn = 4.74 cm and θa = 70◦. The tension-cone

meets the capsule at an angle θtc = 60◦ (in its stress-free state).

Figure 1 shows Mach number isocontours of a domain cross-section at one set of flow conditions

(a) and details of the inflatable experimental model investigated in [13], the cross-section of which

is shown in (b). The tension-cone decelerator is characterized by an outer toroid, inflated to a

pressure pT that is controlled by an independent pneumatic circuit, which supports an approximately

conical membrane attached to the shoulder of a capsule-type vehicle [13]. The supersonic flow, with
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freestream velocity U∞ and Mach number M∞, is characterized by a bow shock upstream of the

vehicle and a turbulent wake behind. The large recirculation region immediately behind the tension-

cone decelerator is defined by flow separation that occurs approximately at the location of maximum

diameter of the vehicle. Because this is a blunt object, flow separation is abrupt and it is not very

sensitive to the geometrical details of the structure. In the present study, the vehicle model is

a scaled-down version of the Viking-type design. The capsule has a diameter of 18.4 cm at the

shoulder where the cone is attached, an aeroshell angle of 70o, and a nose radius of 4.74 cm; see

Fig. 1(b). The capsule surface is approximated by a triangular mesh that is then used to construct

a level set on the fluid grid that defines the region occupied by the interior of the capsule. This is

considered as a rigid body and is fixed in space. Our model lacks the support structure (balance)

used to hold the device in place in the wind tunnel experiments, against which the simulation results

will be compared, and it represents more accurately a free-flight configuration. Nevertheless, the

support structure is installed behind the capsule in the wake of the IAD where its contribution to

drag and flow behavior is known to be small for supersonic and hypersonic flight. More importantly,

the experimental test article contains inflation tubes that are used to control the pressure in the

torus. These were not modeled presently since sufficient geometrical details were not provided in [13]

and their contribution to drag and inflation pressure deployment uncertainty was not completely

documented. The outer diameter of the tension-cone model is 60 cm and the torus has a diameter

of 7.5 cm. The tension-cone and torus are modeled as thin shells. The connection between the cone

and torus is assumed to be fixed, such that the common edges of the finite-element triangles that

discretize both surfaces remain connected as the structure deforms while they are free to rotate

relative to each other. On its opposite end, the cone is fixed to the rim of the rigid and stationary

capsule. The thin shell has a thickness of 0.254 mm and a linear elastic isotropic material model is

assumed with a Young’s modulus of 13.5 GPa and a density of 1440 kg/m3 [27].

Figures 2(a) and (b) show the model that closely approximates the geometry of the inflatable

experimental model shown in Fig. 1(b). The tension-cone is a 16-sided polygon with an outer

diameter of 60 cm across the flat sides of the polygon. Its meridional profile matches the nominal

design of the experimental model, which was determined using linear membrane theory and CFD
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(a) (b)

Fig. 2 Front and back views of the IAD structural model of the experimental geometry (16-

sided polygon) (a,b). Light regions highlight the seams between segments of the polygon,

which are modeled with twice the thickness of the interior regions.

results under the constraint of zero circumferential stress in the tension-cone [13]. At the capsule

attachment point, the half cone angle is 60o. An additional detail included in this model is the

presence of seams at the intersections of the segments forming the polygonal cone. These have a

width of 2.54 cm, extend through the cone and torus, and are prescribed to have twice the thickness

of the interior material. The seams are highlighted in Fig. 2 (a) and (b) with lighter shading. The

two inflation tubes used in the experimental test article to control the torus pressure are not included

in the computational models. As observed in the experiments of [13], the attachment points of the

tubes present weak points in the torus and the folds may preferentially initiate from these points,

an effect that will not be captured in this study. The tension-cone and torus are modeled as thin

shells and discretized with a triangular unstructured mesh of 84,560 elements. The material model

for this geometry has zero Poisson’s ratio. The choice of zero Poisson’s ratio is a compromise to

better approximate the anisotropic behavior of the urethane-coated Kevlar R© fabric material used

in the experimental model.

III. Computational Models and Approach

A. Fluid Modeling

The tension-cone decelerator is a blunt body in a supersonic (compressible) flow, which is

characterized by the presence of a large turbulent wake. At the Reynolds numbers of interest,

on the order of 106, resolution of all length scales in the flow is computationally infeasible. To

accurately represent the turbulent flow and the influence of unresolved length scales, a large-eddy

simulation (LES) model is employed.
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The Favre filtered Navier-Stokes equations provide separation between the large scales of the

simulated flow and the small scales modeled. The Favre or density-weighted filtering operator is

defined by

f̃ =
ρf

ρ
, (1)

where f is an arbitrary field, ρ is the density and the overbar indicates the conceptual filtering

operation implied in LES. The modeling assumptions of negligible subgrid viscous work and triple

correlations leads to the LES governing equations for the density ρ, momentum ρũ, and total

energy E. The subgrid contributions are modeled by the stretched vortex model [28, 29]. This

model provides expressions for the subgrid-scale stress tensor,

τij = ρ(ũiuj − ũiũj) ≈ ρk̃(δij − evi evj ), (2)

and the subgrid-scale heat transport flux,

qj = ρ(c̃pTuj − c̃pT̃ ũj) ≈ −ρ
∆c

2
k̃1/2(δij − evi evj )

∂(c̃pT̃ )

∂xj
, (3)

where δij denotes the Kronecker delta, ∆c the cutoff scale of the LES, c̃p the resolved specific heat

at constant pressure, and T̃ denotes the temperature. The ideal gas equation of state for air is used.

The subgrid-scale kinetic energy, k̃, is estimated by assuming a spiral vortex form [30], according to

k̃ =

∫ ∞
kc

E(k)dk, (4)

where kc = π/∆c represents cutoff wavenumber of the LES (to be discussed shortly), and ev is the

unit vector aligned with the subgrid vortex axis, here taken as the direction of the eigenvector associ-

ated with the largest eigenvalue of the resolved rate-of-strain tensor S̃, and ν = µ/ρ is the kinematic

viscosity. The subgrid-scale vortex represents the ensemble of vortical filaments contributing to the

subgrid stresses [31]. The energy spectrum for the subgrid motion has the form

E(k) = Koε
2/3k−5/3 exp [−2k2ν/(3|ã|)], (5)

where k is the wavenumber, Ko is the Kolmogorov prefactor, ε is the local cell-averaged turbulence

dissipation (resolved and subgrid scale) and ã = S̃ije
v
i e
v
j is the axial strain along the subgrid vortex.
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The model is completed by estimating Koε
2/3 which equal F2(∆)/(∆2/3A) [28, 32], where A =

4
∫ π

0
s−5/3(1− sin s/s)ds ≈ 1.90695, ∆ denotes the grid spacing, and

F2 =
1

6

3∑
j=1

3∑
i=1

[
δj(ũ

+
i )2 + δj(ũ

−
i )2
]
, (6)

denotes the resolved second-order structure function for velocity. In (6), δj(ũ±i )2 = ũ′i(x± ej∆)−

ũ′i(x) denotes the velocity increment along the corresponding coordinate direction (with unit vectors

ej). Further details of this model can be found elsewhere [33]. The main enhancement with

respect to the previously published stretched-vortex model is the development of the corrected

velocity ũ′i, which is introduced to minimize the incorrect activation of the subgrid-scale model at

shock locations. Evaluating (6) with the fully resolved velocity ũ at or near a shock will result in

abnormally large values of ε, due to the large gradient in the velocity around a shock. Therefore,

any mean coherent wave component (such as a shock) is removed from the velocity field by a least-

square fitting procedure before calculating F2 in (6). The strategy is to decompose the velocity field

according to

ũ = ũ′ + b · x′, (7)

where b denotes a vector (with three components) that is determined by a least-squares fit over

the 26 grid cells surrounding the cell for which the subgrid-scales stresses is being calculated, and

x′ denotes the spatial coordinates with respect to the center of the cell in question. This strategy

exploits the fact that a numerically captured shock will appear in the simulation as an approximately-

uniform sharp-gradient zone that may be inclined at an arbitrary angle with respect to the frame

of reference. This non-turbulent flow feature can be removed with modest computational cost. The

fluctuations over the uniform gradient zone are more representative of turbulence activity and they

are therefore used in (6). Consequently, the shocks appear smooth to the subgrid-scale model and

the LES is not strongly activated there. The strategy to adapt the LES model and make it aware of

the presence of shocks is a compromise that produced good results in our simulations; with minimal

subgrid-scale model activation around the bow shock ahead of the IAD (note that there are no

complex shock-shock interactions in the flows simulated here).

To optimize computational efficiency, a structured-grid dynamic AMR discretization of the flow
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domain is utilized [34], which offers a reduced computational cost compared to a unigrid finite-

volume technique [23]. The cutoff scale ∆c was selected to be the local grid spacing ∆ of the finest

mesh at each location with a smooth transition at the locations where a fine mesh resides next to a

coarse mesh. The level of mesh refinement was controlled by refinement criteria described in § IV.

The governing equations are discretized in space using a second-order accurate conservative

finite-difference method with low numerical dissipation and time advancement uses a third-order

Runge-Kutta method [23]. A hybrid discretization approach is used to simulate turbulence using

LES and shock capturing. In turbulent and smooth flow regions, e.g., irrotational regions, a non-

dissipative central-difference scheme (in stable skew-symmetric form) is used, while in regions where

shocks are present, a finite-difference weighted-essentially non-oscillatory (WENO) scheme is used to

accommodate flow discontinuities. These finite-difference stencils are tuned to minimize dispersive

errors at the interfaces between the different schemes. The selection between centered or WENO

scheme is accomplished by a nonlinear detection algorithm [35]. The algorithm analyzes the flow

and determines the locations where the nonlinear Rankine-Hugoniot jump conditions are satisfied.

These regions are then marked for discretization with the WENO scheme and the reminder of the

flow is left for the centered method. The PhD. thesis of Lombardini provides full details on the

implementation [35].

B. Structural Modeling

The tension-cone and the torus of the inflatable decelerator are modeled as thin-shells using

Kirchhoff-Love theory. Due to the extreme thinness of the considered membrane materials, the

bending stiffness of an inflatable decelerator is significantly smaller than its membrane stiffness.

However, the bending stiffness plays a crucial role in the determination of the arrangement and

amplitude of the wrinkles and folds on the shell. As is well known, simply neglecting the bending

stiffness leads to the formation of an infinite number of wrinkles of vanishing amplitude [36]. To

circumvent this problem, membrane models based on the tension-field theory have been proposed

[36, 37]. Tension-field theory, however, can only predict the stress state in the membrane and not

the detailed deformation state. The out-of-plane deformations of the membrane, which can only be
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Fig. 3 Shell mid-surface in the reference and the deformed configurations (left and right,

respectively).

predicted with a shell theory, are crucial for the fluid-dynamics at the fluid-structure interface. From

a computational viewpoint, for the considered large-scale structures, the mesh resolution required

to resolve all wrinkling is computationally prohibitive [38, 39]. Therefore, the element sizes used in

the present computations are larger than the smallest possible wrinkling wave length. Nevertheless,

the present approximations are adequate to capture the essential dynamics of the structure.

The Kirchhoff-Love theory does not consider the out-of-plane shear deformations of the shell

and is particularly well suited for modeling thin shell structures. Details of the specific shell theory

used are described in [24, 25, 40], which are briefly summarized here. Any configuration of the shell

is assumed to be defined as

ϕ = x+ ξn, with − `

2
≤ ξ ≤ `

2
, (8)

where ϕ is the position vector of a material point within the shell volume, x is the position vector

of a material point on the mid-surface Ω, n is the unit normal to the mid-surface, ξ is the thickness

coordinate and ` is the shell thickness. A Lagrangian description is used, where quantities with a bar

denote reference configuration variables and quantities without a bar denote current (or deformed)

configuration variables, see Figure 3.

The equilibrium equation of the shell in its weak form can be written as

Gdyn(ẍ, δx) +Gint(x, δx)−Gext(x, δx) = 0, (9)
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where the first term is the contribution of the inertial forces

Gdyn(ẍ, δx) =

∫
Ω

ρsẍ · δx dΩ, (10)

and ρs denotes the mass density of the surface, ẍ the acceleration of the material points on the

mid-surface, and δx the virtual deformations (i.e., test functions). The integration domain Ω is the

shell mid-surface in the reference configuration. The inertia terms associated with the rotation of

the shell normal have been neglected as they are very small for thin shells. Further, the virtual work

of the internal forces can be written as consisting of a membrane and a bending part

Gint(x, δx) =

∫
Ω

(
N :

∂α

∂x
+M :

∂β

∂x

)
· δx dΩ, (11)

where N is the stress resultant tensor, α is the conjugate membrane strain tensor and the op-

erator : denotes the trace operation. Similarly, M is the moment resultant tensor and β is the

respective conjugate bending strain tensor. The strain tensor α depends on the first-order deriva-

tives and the strain tensor β on the second-order derivatives of the reference and deformed shell

mid-surface x and x, respectively. In computing the stress and moment resultant tensors from the

corresponding membrane and bending strain tensors we assume a linear elastic isotropic material

model. For the exact definition of stress and strain resultant tensors and the constitutive equations

we refer to [24, 25].

In the present computations, the external virtual work is due to instationary fluid pressure

loading

Gext(x, δx) =

∫
Ω

pn · δx dΩ, (12)

where p is the scalar fluid pressure, which may vary in space and time. The pressure loading is

always in the direction of the shell normal and hence orthogonal to the mid-surface.

The conforming finite element discretization of the internal virtual work (11) requires shape

functions with square integrable second-order derivatives (because of the second-order derivatives

present in β). In the present work, smooth subdivision surfaces, as introduced in [24], have been

used as finite element shape functions. Subdivision surfaces can be understood as the generalization

of splines to unstructured meshes and are identical to splines on structured meshes, see [40] for
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details. The particular subdivision scheme employed is the Loop subdivision scheme which operates

on triangle meshes. As in standard finite elements, integrals (10), (11) and (12) are expressed as

the sum of element integrals and the reference and deformed mid-surface position vectors, x and

x, and the test function δx are discretized with subdivision shape functions. Subsequent numerical

integration of the element integrals with one integration point per triangle and the assembly of the

element contributions into global matrices and vectors yield the semi-discrete equations of motion

of the shell

Mdynẍh + f int(xh)− f ext(xh, t) = 0. (13)

Here, ẍh and xh are the acceleration and position vectors, respectively, and Mdyn is the mass

matrix, f int is the internal force vector and f ext is the external force vector. The dimension of the

vectors and matrices in (13) is such that it includes all the nodes in the entire finite element mesh.

Moreover, notice that in (13) the nodal positions xh of the deformed mid-surface mesh are the

only degrees of freedom. Different from traditional shell elements no rotational degrees of freedom

are present. Such so-called rotation-free shell elements are very appealing for problems with large

deformations and have also been developed using alternative approaches, see e.g., [41–43].

The semi-discrete equations of motion (13) are integrated in time with the explicit Newmark

scheme in a predictor-corrector form. Assuming that at time tn the coordinates xnh, the velocities

ẋnh and the accelerations ẍnh of the finite element nodes are known, the corresponding vectors at

time tn+1 = tn + ∆t are predicted with

xn+1
h = xn + ∆tẋnh +

1

2
∆t2ẍnh, (14a)

ẋh,pre = (1− γNewmark)∆tẍnh + ẋnh, (14b)

where γNewmark is the Newmark damping parameter (with 0.5 ≤ γNewmark ≤ 1) and ẋh,pre is the

predictor velocity. Subsequently, the final velocities follow from

ẍn+1
h = M−1

dyn

(
f ext(x

n+1
h )− f int(x

n+1
h )

)
, (15a)

ẋn+1
h = ẋh,pre + γNewmark∆tẍn+1

h . (15b)
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Fig. 4 Possible triangle-triangle penetrations and the definition of the constraint function

g(xh). The left two figures illustrate vertex-triangle penetration and the right two figures

illustrate edge-edge penetration. The volume of the coloured tetrahedrons represents g(xh).

In computations, the mass matrix Mdyn is diagonalized with the row-sum technique, i.e. the

elements of each row are summed together and assigned to the diagonal. The resulting diagonal

mass matrix can be trivially inverted.

For the tightly folded tension-cone configurations, the motion of the surface mesh resulting

from the time integration may lead to collisions between the surface elements. To remedy this,

penetrations that occur after the predictor update (14) are identified and subsequently resolved by

considering collision equations. To this end, a geometric indicator function g(xh), which depends

only on the nodal positions in the deformed configuration, is introduced. The indicator function

is g(xh) ≤ 0 for admissible configurations and g(xh) > 0 for inadmissible configurations with

penetration. For deformations where contact has just occurred, it is g(xh) = 0. Although it is

possible to define the indicator function g(xh) in terms of global geometric quantities, such as

intersection volumes, it is advantageous to define it using local quantities only. In the present

application, essentially two different type penetrations are possible: either a node penetrates a

finite element, or the edge of a finite element penetrates the edge of another element; see Figure 4.

In both cases the indicator function is defined as the signed volume of the tetrahedron formed by

one triangle and a vertex, or by two edges, respectively.

If, after the predictor update (14), an inadmissible configuration with penetration is detected,

it is resolved in two steps. First, the penetrations are removed by modifying the predictor positions

xn+1
h using closest point projections. In our implementation, in the node-triangle penetration case

the penetrating vertex is simply projected back to the closest point on the triangle surface. Similarly,

in the edge-edge impact case the penetrating edge is projected to the closest point on the triangle
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edge. Subsequently, the predictor velocities (14b) of the finite element nodes participating in the

collision are modified so that the kinetic energy and momentum during the collision is conserved.

As derived in [26] this can be accomplished with the following update formula

ẋ+
h,pre = ẋh,pre − 2

(
∇g · ẋh,pre

∇gTM−1
dyn∇g

)
M−1

dyn∇g, with ∇g =
∂g

∂xh
. (16)

Here, ẋ+
h,pre is the post collision predictor velocity, which inserted into the Newmark corrector (15b)

yields the velocity for the new time step. In our implementation, the collision removal and up-

date (16) are performed by removing one-by-one all node-triangle and edge-edge penetrations until

a geometrically admissible mesh configuration is obtained.

C. Fluid-Structure Coupling

The fluid-structure interaction is modeled using a loosely-coupled staggered approach [44, 45].

The fluid and structural models interact in computational terms only in a thin region around the

interface boundary using a temporal splitting method. This interaction is modeled using a variant

of the Ghost-Fluid Method (GFM) [46] introduced in [47–49]. In this technique, the fluid state in

the cells covered (overlapped) by the solid are reconstructed with values that satisfy the velocity slip

boundary conditions at the location of the interface between solid and fluid. These reconstructed

cells are referred to as ghost cells and a level set technique is used to represent the solid boundary

in the Cartesian fluid solver.

The GFM concept is sketched in Fig. 5(a). First, the solid geometry is converted into a level

set (a signed distance function). Second, the computational cells are divided into two groups: those

with positive distance function are labeled fluid cells (lower left-hand side in Fig. 5(a)) and those

with negative distance function are labeled ghost cells (upper right-hand side). The flow vector

of state at the ghost cells, the red point in Fig. 5(a), is obtained from the state in the mirrored

fluid side, the closest specular location to the ghost cell with respect to the boundary (blue point).

Interpolation is used to reconstruct the state at the mirrored points inside the fluid domain since

they do not coincide, in general, with the coordinates of the center of the fluid cells. Recall that, as

introduced in Section IIIA the flow vector of state has five components (ρ̄, ρ̄ũ, Ē). In a third and

final step, the normal velocities in the ghost cells is set to −(ũini)nj , while the tangential velocity
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remains unmodified. Here, normal and tangential components are defined with respect to the normal

of the solid boundary ni computed as the gradient of the level set function. The modified normal

velocities in the ghost cells approximatively enforce a reflective type boundary condition at the solid

boundary. After the ghost region is suitably populated, the fluid solver introduced in Section IIIA

is applied without modification of the numerical stencils. See [47–49] for further details.

(a) (b)

Fig. 5 Conceptual sketch of the Ghost Fluid Method (a) and cross-section of the tension-cone

model with the ghost fluid region highlighted. Note the thickening of the thin tension cone,

but not of the torus and solid rigid capsule (b).

In the present IAD application, the fluid interacts with a thin-shell mid-surface thickened by

τ∆, where ∆ = (∆x∆y∆z)1/3 is the characteristic cell size and τ ≈ 1.75. This regularizes the

thin shell to a thickness that can be resolved by the Cartesian discretization of the flow equations.

Figure 5(b) shows a cross section through the tension-cone model with the ghost region highlighted

on the slice that indicates thickening of the thin tension-cone shell and the torus. The interior

of the torus is identified as a special ghost region, where the desired inflation pressure is specified

independently of the exterior fluid flow. No attempt is made to resolve the flow inside the torus

region and it is modeled as a homogeneous ideal gas.

The fluid pressure on each shell finite element node is evaluated as the difference between

the fluid pressure on shells top surface and the fluid pressure on its bottom surfaces, p+ and p−
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One step of the loosely coupled fluid-structure interaction algorithm

1. Transfer nodal positions and velocities of the shell finite element mesh to the fluid

solver.

2. Fluid update:

(a) Determine the level set on the fluid grid corresponding to the current shell finite

element mesh position.

(b) Classify cells as fluid and ghost cells and modify ghost cell velocities in depen-

dence of the fluid cell velocities.

(c) Update the fluid state.

3. Determine the fluid pressure at the node locations of the shell finite element mesh

and transfer them to the shell solver.

4. Shell update:

(a) Predict the nodal positions and velocities of the shell finite element mesh using

the predictor step of the Newmark method (ignoring contact).

(b) Search for inadmissible triangle-triangle intersections and remove penetrations

with closest point projection.

(c) Modify the predicted velocities of the finite element nodes participating in col-

lisions.

(d) Update the nodal velocities of the shell finite element mesh using the corrector

step of the Newmark method.

Fig. 6 Algorithm for coupling the shell solver with the fluid solver using the ghost-fluid

method.

respectively. It is assumed that the shell mesh is oriented so that a unique definition of a top and

bottom surface is possible. The solid boundaries satisfy the slip boundary condition, essentially an

inviscid approximation, while the pressure and density satisfy the zero normal gradient condition.

We neglect the small subgrid pressure forces that are not resolved by the subgrid closure used in the

present LES. This boundary condition is applicable in the present flow because the forces induced

by high-speed flows over blunt objects are mostly due to pressure; shear stresses are relatively
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small. This is verified in comparison with the experiments below. In our case, the separation of

the boundary layers, formation of the recirculation region and wake behind the capsule and tension

cone, are rather well defined due to the blunt geometry of the structure. There is still structural

coupling with the flow because the pressure fluctuations generated in the turbulent wake are radiated

everywhere, and in particular towards the structure, where they couple with its dynamics. Therefore,

both mean pressure behavior and pressure fluctuations from the strong turbulent wake are felt by the

structure. Further discussion of the applicability of this boundary condition for highly-compressible

separated flows can be found in [22].

IV. Simulation Results
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Fig. 7 Slice through the center of the computational fluid domain showing regions of mesh

refinement, superimposed on contours of Mach number (a); the torus is inflated to a pressure

of 300 kPa. Variation of pressure along the axis of symmetry of the tension-cone decelerator

(b); inset indicates the line from where the pressure was measured and the shaded region in

the figure indicates the solid portion of the capsule.

The flow conditions described in the experimental campaign correspond to a stagnation pressure

of 28.63 kPa with a free stream Mach number of 2.5 and velocity of U∞ = 311.4 m/s, for a Reynolds

number of 1.6×106 [13]. The dynamic pressure q = 1/2ρU2
∞ was 153 psf. All torus inflation pressures

quoted in the following are absolute in kPa. To aid in the discussion of the multiple simulations

we keep the units of kPa for inflation pressures and psf for dynamic pressures. The computational
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flow domain is a box of dimensions 12 × 3 × 3 meters and is discretized dynamically using AMR

with three additional levels of refinement at a refinement factor of 2 between levels. The cells at the

fluid-structure interface are always refined to the maximum level. The finest cell size is 5.8 mm and

the total fluid mesh size is approximately 40 million cells, varying slightly with time as refinement

evolves to accommodate flow features and the deformation of the structure. Refinement is primarily

localized near the body and the bow shock; an instant of a slice through the center of the domain

superimposed onto contours of Mach number and mesh density is shown in Fig. 7(a). Resolution

needs at these conditions was established in previous FSI simulations [22]. The flow direction is

aligned with the x coordinate direction and the face of the tension-cone decelerator lies nominally

in the y-z plane. Figure 7(b) shows the variation of the pressure along the line that coincides with

the axis of symmetry of the tension-cone decelerator. Note that the shaded area indicates the solid

body of the capsule. One can observe in this figure the presence of the bow shock, the compressed

region between the shock and the nose of the capsule, where the pressure increases by more than

eight times the free-stream value, and the wake behind the vehicle. The large pressure difference

between the nose and back of the capsule, on the order of 13 kPa, is the main contributor to the drag

of the IAD; variations in the radial direction are also present (not shown in the this one-dimensional

view).

The structural model is initialized in the simulation without accounting for any (locked-in)

pre-stress due to fabrication of the experimental test vehicle. The flow is initialized by a shock

wave upstream of the structure. The thermodynamic and flow conditions are determined by solving

the corresponding one-dimensional Riemann problem. A clean shock wave (without rarefactions)

travels towards the tension-cone decelerator and sets the upstream flow at its desired conditions.

The initial condition completely washes out of the computational domain within 40 ms of physical

time. The parametric investigation of the response of the structure to varying inflation pressure

followed the following quasi-static protocol. First, a simulation was initialized at high pT and the

flow was allowed to develop to a fully turbulent state over 100 ms. All initial conditions were washed

out and the flow became statistically stationary. The inflation pressure was then lowered in small

steps of 25 kPa and the flow was again allowed to reach statistically steady conditions.
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A. Startup transient and steady fully inflated results

(a) t = 1.28 ms (b) t = 6.46 ms (c) t = 12.3 ms

Fig. 8 Structure at three different instants during the initial transient of the simulation, at a

torus inflation pressure of 350 kPa.

Figure 8 depicts the polygonal tension shell, with the torus inflated to 350 kPa (a high pressure),

at three instants during the initial transient of the simulation. As indicated earlier, the simulation is

started with the structure in the deployed position but without any pre-stress due to fabrication. As

the initial flow-starting shock travels over the tension-cone it transfers an impulse to the structure,

Fig. 8(a), that leads to the formation of a small-amplitude circumferential out-of-plane wave that

travels across the tension-cone. This ripple quickly decays and is replaced by the appearance of sta-

tionary radially aligned wrinkles of the cone surface. As can be seen in Fig. 8(c), the comparatively

less stiff mid-span of each polygonal torus segment deflects further than its adjacent stiffer corners.

This leads to the appearance of compressive strains in the cone which in turn leads to wrinkling.

At this inflation pressure and early time in the simulation, the torus displays minimal deformation.

After the initial transient settles, a fully developed flows arises, shown at one instant as Mach

number contours on the x-y plane for a torus inflation pressure of 350 kPa in Fig. 9. Principal features

of this turbulent supersonic flow include the curved bow shock, the turbulent wake and low-speed

region directly behind the tension-cone decelerator, and recompression shocks downstream of the

wake. The minimal distance between the bow shock and the nose of the capsule is approximately 13.2

cm, the wake is turbulent and a low-pressure recirculation zone exists directly behind the capsule.

The cyclic symmetry of the structure combined with the thicker seam regions also prevents, to a

significant extent, the development and propagation of small-amplitude high-frequency out-of-plane
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Fig. 9 Slice through the center of the computational fluid domain showing contours of Mach

number for fully developed flow over the polygonal tension-cone geometry. The torus is

inflated to a pressure of 350 kPa.

waves that feed energy from the coupling with the fluid. Comparison of the structure, after the

transients has died down, with Fig. 8(c) at 12.3 ms shows that the there is little change over time

when the torus is fully inflated. At the later time in particular, deformation of the tension-cone is

limited to very small amplitude wrinkling of the surface.
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Fig. 10 Axial force with the torus fully inflated to 350 kPa, from initialization of the simulation

(a) and side view of an overlay of the computational and experimental structure (b).

To gain further insight into the dynamics of the fully deployed tension-cone decelerator,

Fig. 10(a) shows the instantaneous axial (drag) force on the combined capsule and tension-cone
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decelerator over 100 ms, from start-up of the simulation. Also shown is a running average of the

force with a window of 5 ms, which eliminates the very high frequency stochastic oscillation that is a

result of structural feedback with small-scale turbulence in the flow. From a negligible initial value,

the force on the structure rises quickly as the dynamic pressure load on the tension-cone increases

through the initial transient. A decaying oscillatory transient is observed as the flow develops, re-

sulting in a drag force fluctuation about what later becomes its mean value. The initial impulse

exerted by the shock and subsequent flow development causes the tension-cone decelerator to move

back and forth in the axial direction, with the torus remaining mostly in a y-z plane. This axial

oscillation is damped out by the fluid and dies out almost completely after 60–70 ms. It is notable

that during deployment experiments conducted by [13], an overshoot in the axial force through the

inflation transient was reported that is similar to the overshoot seen in Fig. 10(a) (which is on the

order of 6–7%). The dynamics of the polygonal tension-cone decelerator are essentially those of

a rigid body once the axial oscillation has decayed and the structure is settled in an equilibrium

configuration. The inset in figure 10(a) shows a zoom around t = 80 ms, where the individual

values of the drag extracted from the simulation at each time step are shown with symbols (the

time step was approximately 4.6 µs and was determined by the variable time-step controller of the

Runge-Kutta integrator to maintain a Courant number below 0.7). This inset highlights the time-

resolved nature of the simulation and clarifies that what appear as substantial variations of the drag

with time observed in the larger scale figure are a consequence of coupling with the turbulent flow,

which posses these very fine time-scale features itself. Figure 10(b) shows a side view overlay of the

computational structure, after the initial transient, with a Schlieren photograph in [13]. It can be

seen that the deformed structure superimposes qualitatively well over the photograph of the experi-

ment. Note that the comparison is only approximate because there is no accurate photogrammetry

measurement from where we could compare the simulation quantitatively. In addition, the shock

standoff distance is measured to be approximately 12.6 cm that is within approximately 4% error

of the computationally measured value of 13.2 cm. These comparisons establish within reasonable

tolerances the validity of the simulation results in the steady regime.

Figure 11 shows the evolution of the axial force for three different resolutions in the nominal
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Fig. 11 Running average of the axial force with the torus fully inflated to 350 kPa for three

different grids at resolutions increasing from 2 to 4 levels or AMR.

inflated torus at 350 kPa. The simulations have identical conditions but the number of levels of

AMR was varied from 2 to 4 to study grid convergence of the solution. The simulations have a finest

grid spacing of ∆ = 23.2, 11.6, and 5.8 mm, respectively. As can be seen in the figure, the solution

on the coarsest resolution mesh displays marked deviations with respect to the next finer simulations

while the two finer meshes produce results that are very close. In consequence, we believe that the

finest mesh resolution used in this study is very close to converged and we have used this resolution

in the remainder of the analysis.

B. Deflation Simulation Sequence

After the flow and structure achieved statistically steady-state conditions, we proceeded to lower

the pressure of the torus in a quasi-static manner. The dynamics of the tension-cone decelerator

under decreasing torus inflation pressure were examined by performing a sequence of simulations

at progressively lower pressures until the structure collapsed. The sequence began with the torus

fully inflated to 350 kPa that had run for 100 ms to ensure that the flow was fully developed

after the initial transient. The simulation was then continued with the inflation pressure lowered

progressively in steps of 25 kPa, running at each new pressure value for 50 ms. The pressure

reduction was instantaneous; i.e., a step function. After each change of inflation pressure, a short
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Fig. 12 Drag evolution after a step change in inflation pressure from 350 kPa to 325 kPa.

transient develops that lasts for about 10 ms before a new statistically-steady state is reached. In

the results that follow, all force coefficients reported are based on data from the latter 40 ms of

each run. Figure 12 shows the evolution of the drag after the step change in inflation pressure form

350 kPa to 325 kPa. As can be seen in this figure, the response of the mean drag is very smooth after

the change in inflation pressure. This supports our choice for the 25 kPa step change in inflation

pressure to conduct the deflation sequence. Note that, as seen in the figure, we kept running the

simulation at 350 kPa for a short while to compare with the run at the lower inflation of 325 kPa.

There are no appreciable differences in the drag during and after the inflation pressure change but

we chose to systematically discard the first 10 ms after a pressure inflation change to ensure no

spurious data (albeit small) was left over in the results.

Figure 13 shows the tension-cone structure at the end of the simulation periods for different

inflation pressures through the deflation simulation sequence. Reduction of the inflation pressure by

100 kPa, from 350 kPa to 250 kPa, has relatively little effect on the stability of the structure as the

torus remains nearly fully inflated. Further reduction of the pressure leads to a buckling of the torus,

which settles into a post-buckled state with about eight localized folds (half the number of sides of

the polygon). These folds are located near the mid-spans of segments of the polygonal structure,

away from the stiffer corner regions, and increase in amplitude as the inflation pressure decreases.

At 125 kPa, Fig. 13(e), the deformation starts to focus at two hinge-like folds on the torus and

large-scale symmetric bending type deformation of the tension-cone and torus are apparent. The
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(a) 350 kPa (b) 250 kPa (c) 200 kPa

(d) 150 kPa (e) 125 kPa (f) 100 kPa

Fig. 13 Snapshots of the tension shell state at different torus inflation pressures from the

simulation sequence with decreasing inflation pressure.

structure does not collapse until the pressure is reduced further, to 100 kPa. Note that the collapsed

configuration shown in Fig. 13(f) is one among many possible. The particulars of the computational

analysis, the deflation history and flow around and behind the tension-cone decelerator will select

a particular collapsed state.

Axial (drag) force coefficients for the combined capsule and tension-cone decelerator system

through the deflation sequence are plotted in Fig. 14, and the corresponding tangential (lift/yaw)

force coefficients are shown in Fig. 15. These mean force coefficients are calculated from the latter

40 ms of each 50 ms simulation and the latter 50 ms for the first simulation that run for 100, and

error bars show the standard deviation of each computational value. When fully inflated, the axial

force coefficient of the system is CA = 1.21±0.05, while the forces in directions perpendicular to the

flow direction are small, CT = 0.005± 0.076 (as expected at the present zero angle of attack). Note

that the standard deviation is an order of magnitude larger than the average force, which is very

nearly zero. The collapsed system is found to have an axial force coefficient of CA = 0.64 ± 0.05,
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Fig. 14 Average axial force coefficients on the combined capsule and tension-cone decelerator

with varying torus inflation pressure. Continuous curve denote experimental results and dis-

crete datapoints denote simulation results with vertical bars denoting the standard deviation

of the fluctuations.

and tangential force coefficient CT = −0.040 ± 0.040. The variation in the forces on the vehicle

is primarily a function of the projected surface area of the tension membrane, so the coefficients

reported for the collapsed structure are strongly dependent on its particular configuration. Note also

that the larger tangential force is due to the asymmetry of the collapsed structure. For comparison,

the experiments of [13] reported an axial force coefficient of approximately CA = 1.3 for the fully

inflated torus, and a minimum of CA = 0.84 for the partially collapsed structure at the lowest

inflation pressure tested in the wind tunnel. The actual drag plot obtained in the experiment

is shown in Fig. 14 as the continuous curve. Note that the fully inflated result is close to the

experimental value but there are differences in the drag near the nonlinear buckling regime, where

all structural and mechanical differences between the experiment and the simulation contribute to

the discrepancy (note that no error bars were documented in the experiment). It was noted that the

reported forces are subject to some uncertainty owing to the unquantified effect of the inflation tubes

used to control the torus pressure, which are not present in the simulations. This is a particularly

important factor for the partially collapsed structure, where the presence of inflation tubes on the
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Fig. 15 Average tangential force coefficients on the combined capsule and tension-cone decel-

erator with varying torus inflation pressure.

experimental model resulted in a favored buckling mode where the tension-cone decelerator collapses

primarily in the direction diametrically opposed to the tube axis. The experimental tension-cone

decelerator is constrained by the inflation tubes and they prevent it from collapsing fully. The

unconstrained structure in the present simulation collapses more extensively, and hence a lower

drag coefficient (which is calculated based on the original deployed area) is to be expected.

Figures 13 and 14 show that the tension-cone structure remains stable under decreasing inflation

pressure to at least 150 kPa. While the amplitude of the folds increases significantly, as seen in

Fig. 13(a)–(d), the average axial force coefficient changes by little more than 5%. In terms of

drag, therefore, the change in inflation pressure over this inflation pressure range has a small effect.

However, a fundamental change occurs in the character of the wake, as the structure transitions

from the stiff to the flexible behavior. Figure 16(b) shows that the relatively coherent wake structure

observed at 350 kPa has broken up and the wake has increased significantly in width (it grows to

be wider than the tension shell within about four diameters downstream).

The increase in flexibility of the structure with the reduction in pT is reflected in the increasing

deformation of the tension-cone decelerator. Figure 17 shows the evolution of the surface folds

over time after the torus pressure is reduced from 175 kPa to 150 kPa. The reduction in stiffness
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(a) 350 kPa (b) 150 kPa

Fig. 16 Wake comparison on a slice through the center of the domain, showing contours of

Mach number, from the simulation sequence of decreasing torus inflation pressure. At the

lower inflation pressure the wake has increased significantly in width.

(a) t = 0.93 ms (b) t = 7.22 ms (c) t = 18.4 ms

Fig. 17 Structure at three instants at an inflation pressure of 150 kPa. The structure stabilizes

in the configuration shown in (c), undergoing only small deformations from this position after

the initial transient.

of the torus leads to an increase of the compressive strains over the entire decelerator, which are

accommodated by localization of the deformations in two diametrically-opposed folds. Growth of

this primary buckling mode ceases as the structural forces and aerodynamic loads enter equilibrium

with the tension membrane still deployed. The stability of the state shown in Fig. 17 manifests

itself by the minimal further deformation over the remainder of the 50 ms simulation. The inherent
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stiffness of the seam-supported polygonal shape prevents noticeable large-scale flapping or local

high-frequency out-of-plane oscillations from developing, at least under the present flow conditions.

(a) t = 0.43 ms (b) t = 7.43 ms (c) t = 20.9 ms

Fig. 18 Selection of structure at three instants with an inflation pressure of 125 kPa. The

structure stabilizes near the configuration shown in (c), as the side with the “pinched” fold

begins to flap.

As the torus inflation pressure is decreased below 150 kPa, the overall integrity of the structure

starts to become compromised. Figure 18 shows the transient response of the structure to the

reduction in torus pressure from 150 kPa to 125 kPa. The global buckling mode with the two

hinge-like folds that started to appear at 150 kPa becomes more pronounced, but again equilibrium

is reached with the structure still largely deployed. As the projected surface area of the tension-

cone does not decrease significantly, the average drag coefficient drops only 2% compared to that

measured at 150 kPa. The tension-cone does undergo significant deformation: one of the two large

folds forming the hinge is pushed back towards the inside of the decelerator almost lying against

the capsule surface, while the other fold on the opposite side becomes tighter and causes significant

bending of the torus out of the y-z plane. After reaching an approximate equilibrium in the state

shown in Fig. 18, the entire decelerator begins a small amplitude flapping motion, as it interacts with

the wake, pivoting around the hinge formed by the two folds. The development of an asymmetry in

the structure is also revealed in a significant deviation from zero in the tangential force measurement

shown in Fig. 15. The flapping deformation alters the wake behind the vehicle again, as shown in

Fig. 19. The low-speed region develops tails on its outer edges as slower moving vortices are shed

from the flapping structure. Spreading of the wake continues as it moves downstream, and its width
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increases still faster than at 150 kPa. These changes help maintain a drag coefficient within a few

percent of that with the torus fully inflated, despite a reduction in frontal area of the tension-cone.

Fig. 19 Wake behind the vehicle at an inflation pressure of 125 kPa. Compared with Fig. 16,

its width has increased significantly and the low-speed region has developed “tails”.
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Fig. 20 Axial force acting on the vehicle after the torus inflation pressure is reduced to 100

kPa, showing the decrease in drag experienced during collapse of the tension-cone.

Further deflation of the torus to 100 kPa causes its collapse as the reduction in internal pressure

is too large to withstand the compressive forces applied by the tension-cone. Figure 20 shows

the development in the axial force on the vehicle, and Fig. 21 shows a sequence of the structure

through collapse of the tension-cone. The initial transient response of the structure, Fig. 21(a), is

a continuation of that seen at 150 and 125 kPa, as the existing folds and wrinkles grow larger in

amplitude and the change in drag is minimal. The difference at 100 kPa is that an equilibrium state
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(a) t = 8.42 ms (b) t = 18.7 ms (c) t = 25.1 ms

(d) t = 31.0 ms (e) t = 38.8 ms (f) t = 47.0 ms

Fig. 21 Selection of structure at six instants from collapse of the tension-cone after the torus

inflation pressure is reduced to 100 kPa. Note in particular the folding of the tension-cone

across (a)–(c), followed by a twisting motion into the collapsed form over (d)–(f).

is not achieved; the tension-cone continues to buckle as the two hinge-like folds in the surface move

rearward, (b)–(c). A large pocket forms on the right-hand side of the tension-cone (as viewed in

Fig. 21) where the torus moves and becomes pinched. The next stage of collapse, (d)–(e), occurs

as this side is pushed back so far towards the x-axis that it begins to pull on the opposite side

in a twisting motion about the capsule and begins to form spiral folds in the tension-cone. This

change to a twisting type motion enables to package the decelerator even tighter than with just

radial folding possible. The resulting effect is a large reduction in the projected area of the tension-

cone, which substantially reduces the drag of the vehicle over a time period of about 25 ms. The

collapsed structure stabilizes into the position shown in Fig. 21(f) over the last few milliseconds of

the simulation.

Further investigation of the minimal torus inflation pressure required to support the tension-

cone in the deployed state was performed by running additional simulations, progressively lowering
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Fig. 22 Comparison of axial forces on the vehicle at low inflation pressures at which the

structure collapses. Near the minimal deployment pressure, buckling occurs much more

slowly.

(a) 103.125 kPa (b) 100 kPa

Fig. 23 Comparison of collapsed tension-cone decelerator positions, at the highest inflation

pressure at which collapse was observed, and the simulation at 100 kPa, approximately 50 ms

after the pressure was changed.

the inflation pressure from 125 kPa in decreasing increments until 100 kPa, where collapse was

first observed. The large-scale deformation and fold growth trends observed during the simulation

at 125 kPa continue when the inflation pressure is lowered to 112.5 and 106.25 kPa, but in both

cases a stable deformed state is reached and the tension-cone does not collapse. Only when the

pressure is further reduced to 103.125 kPa collapse is observed, with the corresponding fall in drag.

The average of the pre- and post-collapse inflation pressures, 104.7 kPa, can be defined as a more

accurate minimum deployment pressure. The highly nonlinear nature of the buckling process for the
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tension-cone at pressures near the minimum is evident in a comparison of the collapse observed at 100

kPa with that at 103.125 kPa, shown in Fig. 22. Although differing in inflation pressure by only 3%,

the speed and extent of folding of the structure after the pressure is changed is drastically different.

Within 10 ms of the step change in pressure to 100 kPa, the drag on the vehicle decreases rapidly as

the tension-cone begins to fold tighter undergoing an axial twisting type overall motion. A similar

folding of the structure at 103.125 kPa occurs only after nearly 50 ms; before this time, deformation

is limited to continued deflection of the “pinched” side of the tension-cone seen in Fig. 18(c). At 52.8

ms, the deformed structure at 103.125 kPa shown in Fig. 23(a) is in an almost identical configuration

to that in Fig. 21(b). As mentioned, the geometry and location of the observed folds, the geometry

of the final collapsed state and the obtained minimum deflation pressure cannot be expected to be

unique. However, the present model can be used to perform parametric studies investigating the

influence of different design choices, aerodynamic conditions and deflation cycles on the minimum

deflation pressure.

C. Dependence of the structural collapse on the dynamic pressure

q (psf) pI,min (kPa) pI,est (kPa)

153 104.7 210

100 26.6 137

50 – 68

Table 1 Minimum stable inflation pressure for the tension-cone decelerator at different dy-

namic pressures

To complete the examination of the tension-cone decelerator dynamics, additional simulations

were performed at lower dynamic pressures. This was achieved by lowering the free-stream velocity

and stagnation pressure such that the free-stream Mach number remained unchanged. Two cases

were considered, relative to the baseline simulations with q = 153 psf: the first had a dynamic

pressure of q = 100 psf with free-stream velocity 203.3 m/s, and the second had q = 50 psf and

101.7 m/s. Simulations were performed with the torus fully inflated (300 kPa) and at decreasing

pressures until the structure collapsed. The minimum torus inflation pressure required to maintain
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the structure in the deployed state is strongly dependent on the dynamic pressure experienced by

the vehicle. The primary load on the tension-cone is the aerodynamic load across the face of the

vehicle, which is proportional to the dynamic pressure in the free stream, and since that load is

supported by the torus acting as a compression ring, it is directly related to the inflation pressure.

To determine the torus pressure at which structural collapse occurs for the polygonal tension-

cone under different dynamic pressures, the simulations at 100 and 50 psf were continued with the

torus pressure progressively decreased until collapse was observed. The structure was described as

collapsed if significant buckling continued after its response to the initial transient of the change in

inflation pressure; this is a distinct response compared to the stably deployed tension-cone. The

results of this simulation sequence are presented in Table 1. Collapse of the structure is a nonlinear

process dependent on the interaction between nonlinear buckling in the torus and the aerodynamic

load. Accordingly, the minimum inflation pressure varies nonlinearly with the change in dynamic

pressure, increasing rapidly with increasing aerodynamic load. This pressure has been estimated by

[3] by considering the minimum pressure required to reach a zero compressive stress; i.e., no local

wrinkling; in the walls of a circular torus. For the experimental model parameters, and assuming a

drag coefficient of 1.2, the estimate, pI,est, gives for a circular torus the values shown in the third

column of Table 1. Clearly, this estimate represents only an upper bound since the nonlinearity

of the structural collapse is not considered. As our simulations illustrate, the torus can undergo

significant small-scale wrinkling and large-scale folding without losing its structural integrity. The

minimum inflation pressure estimate is, however, in general agreement with the simulations of the

polygonal tension-cone in terms of the pressure at which wrinkling of the torus begins. At 153 psf,

the first small wrinkles appear in the torus at an inflation pressure of 250 kPa, but are structurally

not relevant until the pressure is lowered to 225 kPa or below. The structure is not significantly

compromised until 150 kPa. At 100 psf, there is no wrinkling at 150 kPa and small-amplitude

folding at 100 kPa. At 50 psf, there is no folding at 50 kPa and only small-amplitude folding at 25

kPa. No collapse was observed in this simulation, even after reducing the inflation pressure to zero.

It is clear from the present results that the estimate of [3] over-predicts the observed values, as the

tension-cone structure remains stably deployed with significant small-scale wrinkling and even some

33



large-scale folding in the torus for a wide range of intermediate inflation pressures.

V. A resonant dynamical state
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Fig. 24 Axial force coefficients acting on the vehicle at different dynamic pressures.

It was clearly observed in Fig. 10 that the passage of the initial shock over the structure, ap-

proximately a step loading, leads to sizable axial displacements of the structure (seen as oscillations

in the force). At the high inflation pressure, 350 kPa, the polygonal structure experienced a tran-

sient “beating” type motion in the axial direction that decayed over 60–70 ms. Since this behavior

appeared interesting, the response of the structure to the initial step loading produced by the pass-

ing shock as a function of the dynamic pressure q was explored. Several of these simulations were

discussed already in Section IVC focusing on the critical inflation pressure for nonlinear buckling

of the vehicle. It was observed that the amplitude of the oscillations grew as the dynamic pressure

q decreased from 153 to 50 psf. To complete this data, an additional case with q = 75 psf and

U∞ = 152.5 m/s was carried out to further investigate the response of the structure. In all these

cases pT = 300 kPa (fully inflated). Note that the Mach number and Reynolds numbers were kept

constant in these simulations but the thermodynamic conditions were adjusted as needed (except-

ing the case q = 153 psf, these new simulations are not matched to any particular experiment).

Figure 24 shows the transient axial drag coefficient for all cases, q = 50, 75, 100, and 153 psf. As ex-

34



pected, the amplitude of the oscillations in the drag increases consistently with decreasing dynamic

pressure. Note that the mean steady-state value is very similar in all cases. The notable difference

between each case is the amplitude of the oscillation: it increases by approximately a factor of four

over the range of dynamic pressures. It appears that the cases at 75 and 50 psf have entered a

near-resonant state where the interaction between the flow and the structure sustains the oscillation

for a much longer period. At 100 psf, the amplitude of the oscillation in the drag is nearly a factor

of two larger than that seen at 153 psf, but a self-sustaining cycle is not seen; the amplitude of the

oscillation decays with time. In contrast, the case q = 50 psf exhibits a long sustained oscillation

while the case at 75 psf shows larger initial amplitudes that decayed faster than those of the case

50 psf.
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Fig. 25 Spectra of axial force after the initial transient, at various dynamic pressures for the

fully inflated torus.

Fig. 25 shows the power spectra of the axial force (calculated in a window excluding the first

part of the initial transient). The very clear peak occurs at the frequencies listed in Table 2 denoted

by fs,peak. In the same table, we list the mean and amplitude of the drag coefficient CA and

the acoustic frequency based on the speed of sound in the region between the bow shock and the

structure, where the flow is compressed, and the distance between the nose of the vehicle and the

bow shock axis of symmetry (approximately 13 cm). It is observed that the main axial mode of
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q (psf) CA shock distance (cm) fa (Hz) fs,peak (Hz)

153 1.213± 0.052 12.70 1476 165.0

100 1.206± 0.092 12.79 960 151.4

75 1.221± 0.187 12.85 717 146.5

50 1.222± 0.206 13.16 465 146.5

Table 2 Acoustic frequencies in the flow and the observed structural vibrational frequencies

for the axial beating mode.

vibration of the structure is approximately 150 Hz. For a given decelerator geometry, this frequency

primarily depends on the material and the thickness of the structure and the inflation pressure of

the torus. Minimal variation between the simulations is due to the added mass effect, which is

very small in this particular case because the density of the gas is much smaller than that of the

structure. As well as the fact that the inflation pressure for the case with dynamic pressure 153 psf

was 350 kPa while that for the cases at 50, 75, and 100 psf simulations was 300 kPa. Examination

of the spectrum for the 300 kPa inflation pressure case at the dynamic pressure of 153 psf shows a

virtually indistinguishable oscillation frequency peak at 154 Hz. At 50 psf, the structure oscillation

continues with a frequency of 146.5 Hz even after reduction of the inflation pressure to 150 kPa.

Harmonic modes are also present, with reduced amplitude, and the first harmonic at 293 Hz is

visible for both 50 and 75 psf cases in Fig. 25. The high-frequency noise evident in all the force

plots presented here is incoherent but appears to lie in the frequency range 2.5–3 kHz (which was

resolved with approximately 10 time steps in the simulations at 153 psf) and it is consistent with

the turbulent motions in the wake behind the structure.

Figure 26 shows the structure for the q = 50 psf case at 157 (left half) and 160 ms (right

half). These times correspond approximately to the peak and valley of an axial oscillation cycle

in the fully developed flow. It can be seen that the deformation is almost entirely in the axial

(x) direction and wrinkling is minimal. The maximum deflection position is approximately 4.5

mm downwind with respect to the unloaded geometry. Extrapolating from Table 2, a stronger

interaction might be expected if the natural frequency of the structure were somehow increased to

match the acoustic frequency of the fluid cavity enclosed by the bow shock and the front of the
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Fig. 26 Side view of the tension-cone comparing the structure at minimum (left) and maximum

(right) axial deflection, showing the range of motion (q = 50 psf, pT = 300 kPa). Artificial

illumination was used in the rendering of the image to aid in the visualization of the geometry

and give a natural perception of depth.
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Fig. 27 Axial force coefficient comparison of simulations at q = 75 psf with different mate-

rial Young’s moduli for the tension-cone decelerator. At 121.5 GPa, the frequency of the

oscillation increases and a secondary vibration develops.

vehicle. Taking as a reference case q = 75 psf, a natural frequency increase of the structure by a

factor of four, fa ≈ fs,peak, should match the acoustic frequency of the flow. To further investigate

if a limit-cycle or resonance phenomenon is possible, an additional simulation was performed with

q = 75 psf, but with the Young’s modulus of the fabric artificially increased by a factor of nine

to a value of E = 121.5 GPa. No claim is made that this corresponds to any particular material

or condition experienced in the experiment. The rationale for increasing the Young’s modulus by
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this large factor was based on the observation that the longitudinal and transversal fundamental

frequencies of the elastic membrane scale with
√
E, all other parameters being constant [50]. With

this simple scaling, increasing the elastic modulus by a factor of nine should lead to an increase

in fundamental frequencies by a factor of three, to approximately 438 Hz. As shown in Fig. 27,

the increase of stiffness has a dramatic effect on the transient behavior of the structure and on the

drag. In the first phase, first 60 ms of the simulation, the familiar purely axial beating is observed,

though at a higher frequency. In the second phase, after the first 60 ms and before 150 ms, a

new dramatic, larger amplitude, oscillation was triggered. This was sustained but appeared to be

modulated and damped. In the final third phase, after 150 ms, the drag became erratic for the rest

of the simulation with a very high frequency content. After some inspection of the structure and the

flow, it was observed that the beginning of the second phase matches closely with the development

of the turbulent flow in the wake. Before this instant, the flow is developing from its initial non-

turbulent condition, but by 60 ms, small scale turbulence and coherent structures in the wake have

emerged. The structural behavior after 150 ms is easily understood with the aid of the Fig. 28. As

can be seen in the figure, the large axial motion in the second phase evolved under the influence

of turbulent flow coupling into a growing pitching type of oscillation of the whole structure. Now,

and despite the high inflation pressure, the entire torus rotates substantially along an axis that is

orthogonal to the main flow direction; the maximum rotation angle of the torus reached values as

large as ±2o. More importantly, the side forces shown in Fig. 29 indicate that if the vehicle were to

fly in these conditions it would exhibit a quite erratic trajectory.

A sketch of the fluid-structure interaction that is thought to be observed is shown in Fig. 30. The

region between the bow shock and the capsule and tension-cone acts as an acoustic chamber. Here,

perturbations in the displacement of the tension-cone produce acoustic waves that can propagate

upstream to the bow shock wave. Part of the energy of these perturbations is reflected back to the

structure, therefore closing the loop, and part is used to move the shock. There is no transmission

of acoustic energy upstream of the bow shock because the flow is supersonic there. This feedback

coupling results in further deformation of the structure through local displacement of the membrane

but it also produces an acoustic pressure wave that becomes sufficiently strong to displace the
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(a) t = 32.6 ms (b) t = 96.9 ms (c) t = 99.8 ms

(d) t = 104.9 ms (e) t = 115.4 ms (f) t = 120.1 ms

Fig. 28 Selection of structure at several instants from the simulation with the tension-cone

decelerator Young’s modulus increased by a factor of nine. The pairs (b)–(c), and (e)–(f),

represent adjacent local axial force minima and maxima respectively, while (d) shows an

intermediate state.
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Fig. 29 Side forces of simulation at q = 75 psf with E = 121.5 GPa.

tension-cone axially. When the deformation becomes sufficiently large, the non-axisymmetric forces

of the turbulent wake transfer some of the energy to excite the rotational modes of the structure

(shown as spins in the figure). Note that the acoustic chamber analogy is only a partially accurate

description because the bow shock, unlike a wall, is capable of displacement to satisfy the nonlinear

Rankine-Hugoniot jump conditions. In our simulations, the movement of the bow shock is not

appreciable until the displacements of the structure becomes large. Furthermore, some acoustic

energy is radiated laterally and does not contribute to the coupling. The initial high-frequency

vibration of the tension-cone membrane induces acoustic waves that travel to the bow shock and
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Fig. 30 Sketch of the fluid-structure coupling.

are partially reflected back towards the structure. These waves excite the structure further and

lead to more transmitted energy upstream. There does not seem to be enough natural damping

by viscous or turbulence diffusion to damp these acoustic waves sufficiently. As the kinetic energy

of the waves and the structure keeps accumulating, with increasing structural displacements, small

asymmetries originating in the turbulent wake are able to tilt (rotate) slightly the structure and

induce the excitation of the relatively softer non-axisymmetric modes of deformation of the entire

vehicle. Once this happens in our simulations, we presume that a strongly nonlinear coupling

between the bow shock, structural dynamics, and turbulent wake maintains the cycle (third phase

in Fig. 27).

VI. Conclusions

We present and discuss a number of fluid-structure interaction simulations of an inflatable

aerodynamic decelerator concept for planetary exploration missions. A complete cycle of inflation

pressures was performed to match experimental results available in the literature. We observe good

agreement in terms of drag and deformation of the structure when the supporting toroidal structure

that ensures deployment is fully inflated. As the pressure decreases, the structure collapses, in

agreement with the experiment. The collapse pressure is only qualitatively matched since the

computational and experimental structures are not exactly the same. An analysis of the deformed
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vehicle and the dynamic phenomena that leads to the onset of buckling and the eventual collapse

of the structure at low inflation pressures is discussed. It is observed that as the pressure decreases,

transient localized buckling of the torus appears and disappears in a repetitive manner. As the

inflation pressure decreases further, these incipient buckling regions become localized and permanent

and ultimately, when the inflation pressure is sufficiently low, lead to the large-scale buckling of the

structure. Changes in the turbulent wake were also observed. At high inflation pressures, the

turbulent wake exhibits its well known structure with a conical (convergent) recirculation region

that is straightened by a recompression shock that leads to the turbulent wake. At low inflation

pressure, the wake becomes cylindrical and appears to shed coherent flow structures uniformly. No

turbulent Kármán street is apparent.

Exploring the dynamic response of the structure to the initial impulsive load produced by

the shock that establishes the flow, it was shown that it is possible to make the flow and structure

resonate according to a new type of fluid-structure interaction resonance phenomenon. It is reasoned

that the source of the resonance is a matching of the acoustic time scale, in the compressed flow

region between the bow shock and the front of the vehicle, and the fundamental frequency of

the structure corresponding to its axial mode of deformation. A simulation was carried out to

demonstrate that such a fluid-structure coupling was indeed possible. The simulation showed that

the acoustic coupling resulted in increasing displacement of the structure with time. Eventually,

the deformation was so large that non-axisymmetric disturbances from the turbulent wake result in

a tilt of the torus and lead to a sustained rotation oscillation that remain undamped.
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