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SUMMARY

We present a new shell model and an accompanying discretization scheme that is suitable for thin and thick shells. The deformed
configuration of the shell is parameterised using the mid-surface position vector and an additional shear vector for describing the
out-of-plane shear deformations. In the limit of vanishing thickness, the shear vector is identically zero and the Kirchhoff-Love
model is recovered. Importantly, there are no compatibility constraints to be satisfied by the shape functions used for discretizing
the mid-surface and the shear vector. The mid-surface has to be interpolated with smooth C1-continuous shape functions, whereas
the shear vector can be interpolated with C0-continuous shape functions. In the present paper, the mid-surface as well as the shear
vector are interpolated with smooth subdivision shape functions. The resulting finite elements are suitable for thin and thick shells
and do not exhibit shear locking. The good performance of the proposed formulation is demonstrated with a number of linear and
geometrically nonlinear plate and shell examples.
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1. Introduction

In [11, 10], Cirak et al. used the Kirchhoff-Love shell model in combination with subdivision surfaces for developing
particularly robust and efficient thin shell finite elements. The Kirchhoff-Love energy functional depends on the metric
and curvature of the shell mid-surface in the reference and deformed configurations. Accordingly, shape functions with
square-integrable first and second order derivatives are necessary. In subdivision shells, subdivision surfaces are used
for generating the prerequisite smooth shape functions with square integrable second derivatives. Subdivision surfaces
originate from computer aided design (see e.g. [34, 22, 21, 9] for an overview) and are, at present, extensively used
in computer animation applications [13]. Subdivision surfaces are in general identical to b-splines or NURBS on
structured meshes, but they provide provably smooth surfaces on unstructured meshes [23].

As any other shell model, the Kirchhoff-Love model is only an approximation to the inherently three-dimensional
deformation state in a thin solid body. It can be mathematically shown that the Kirchhoff-Love model is an
asymptotically correct model for a solid in the limit of vanishing thickness [8]. There are many engineering
applications involving moderately thick shells for which the Kirchhoff-Love model is insufficient. The accuracy of
the Kirchhoff-Love model deteriorates because of the neglected out-of-plane (or, in other terms, transverse) shear
energy contribution which becomes important as thickness increases. The Kirchhoff-Love model is also referred to
as a shear-rigid model because of the not considered out-of-plane shear deformations. In shear-flexible shell models,
like the Reissner-Mindlin model, the energy contribution of the out-of-plane deformations is taken into account, and
as a result, such models are better suited for thick shells. Note that the enhanced accuracy comes with an increase in
the number of variables so that the Kirchhoff-Love model is still appealing for thin shells.

The parameterisation of the deformations underlying the Reissner-Mindlin model is not unique. The choice of the
parameterisation can greatly affect the ease of computational implementation and the conditioning of the resulting
discrete equation system. In earlier works on Reissner-Mindlin type shell finite elements typically the displacements
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Figure 1. Shell geometry in the reference and the deformed configurations (left and right, respectively).

of the shell mid-surface and the rotations of the shell director are chosen as variables. Although the discretization of
finite rotations is not straightforward, it is a well understood and solved problem. Later on, a number of shell models
were proposed in which instead of the rotations an additional displacement vector is used for describing the director
deformations [26, 7, 3, 5, 25]. In such models the unknown variables are the three components of the mid-surface
displacement vector and the three components of the shear vector describing the difference between the deformed and
undeformed director. Moreover, in order to facilitate the use of three-dimensional material models, additional variables
for describing nonlinear displacements across the thickness are included. All the mentioned Reissner-Mindlin type
models lead to energy functionals which contain only the first order derivatives of the displacement variables, which
is important for subsequent discussions.

In the present work an alternative parameterisation of the Reissner-Mindlin model is proposed. The variables of
the new model are a vector field for describing the shell mid-surface displacements and an additional shear vector
field for describing the deformation of the director. The standard Kirchhoff-Love model is recovered by setting the
shear vector field to zero. Hence, the thin limit is characterised by non-zero mid-surface displacements and a zero
shear vector field. In contrast to conventional Reissner-Mindlin type models, the energy functional of the proposed
model contains the second order derivatives of the mid-surface displacement field and the first order derivatives of
the shear vector field. Therefore, the conforming discretization of the energy functional requires shape functions from
the Sobolev space H2. In the presented numerical computations, the mid-surface displacement and the shear vector
fields are interpolated with subdivision shape functions. Although the subdivision shape functions greatly facilitate
the implementation of the proposed model, it would also be possible to use alternative smooth interpolation schemes,
such as those presented in [17, 19].

The outline of the paper is as follows. In Section 2 we introduce the proposed shell kinematics and compare it with
conventional Kirchhoff-Love and Reissner-Mindlin type models. As a simple comparative example, the bending of
a straight beam into a circle is studied. In Section 3 a standard semi-inverse approach is used to derive the energy
functional for the proposed model. Shell specific constitutive models and the modifications required to enforce the
plane-stress condition are discussed in Section 4. In Section 5, we briefly review subdivision surfaces and then
illustrate their use in discretizing the new shell energy functional. Finally, in Section 6 a number of linear and nonlinear
plate and shell examples are presented to study the efficiency and robustness of the new shell elements.

2. Shell kinematics

We consider a shell with the mid-surface Ω, thickness t and the assumed kinematics

ϕ(θ1, θ2, θ3) = x(θ1, θ2) + θ3d(θ1, θ2) with θ3 ∈
[
−t/2, t/2

]
(1)

where ϕ is the position vector of a material point with the convective (curvilinear) coordinates (θ1, θ2, θ3) and x
is the position vector of a material point on the shell mid-surface with the convective coordinates (θ1, θ2, θ3 ≡ 0),



SHEAR-FLEXIBLE SUBDIVISION SHELLS 3

• over-bar denotes variables
of reference configuration

Greek indices take values 1, 2

Latin indices take values 1, 2, 3

•,i comma denotes differentiation
with respect to θi

aα =
∂x

∂θα
covariant base vectors

for θ3 = 0

aα =
∂θα

∂x
contravariant base vectors

for θ3 = 0

gi =
∂ϕ

∂θi
covariant base vectors

gi =
∂θi

∂ϕ
contravariant base vectors

gij = gi · gj components of covariant
metric tensor

gij = gi · gj components of contravariant
metric tensor

a3 =
a1 × a2

|a1 × a2|
normal to the mid-surface

Table I. Notation and definitions.

see Figure 1. The unit vector d is referred to as the shell director or shell fibre and will be specified below. In order
to distinguish the reference and deformed configurations from now on the reference configuration variables will be
denoted with an over-bar.

In the reference configuration, the director is chosen to be the mid-surface unit normal so that d = a3 (using the
definitions in Table I). In the deformed configuration the director is assumed to be

d(θ1, θ2) =
a1 × a2 +w

|a1 × a2 +w|
(2)

where w is a vector added on the non-normalised deformed normal a1 × a2. Since the purpose of w is to enable
out-of-plane shear deformations, we will refer to it as the shear vector.

With the kinematic assumptions (1) and (2) and the definitions of Table I the deformation gradient of the shell can
be expressed as

F =
∂ϕ

∂ϕ
=
∂ϕ

∂θi
∂θi

∂ϕ
= gi ⊗ gi =

[
aα + θ3d,α

]
⊗ gα + d⊗ g3 (3)

Next, we derive the Green-Lagrange strain tensor of the shell. To this end, first recall the definition of the Green-
Lagrange strain tensor for a three-dimensional solid

E =
1

2

(
F TF − I

)
=

1

2

(
gij − gij

)
gi ⊗ gj (4)

Then, considering the kinematic assumptions we obtain

E = α+ θ3β + (θ3)2 · · · (5)

with the components

ααβ = 1
2 (aα · aβ − aα · aβ) (6a)

αα3 = α3α = 1
2aα · d (6b)

α33 = 0 (6c)

βαβ = 1
2 (aα · d,β + aβ · d,α − aα · a3,β − aβ · a3,α) (6d)

βα3 = β3α = β33 = 0 (6e)
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where we used the relations aα · a3 = 0 and d,α · d = 0. In (5) the quadratic terms have been neglected as it is
common in most shell theories.

To gain physical insight into the strain expressions (6) it is helpful to recall that aα · aβ is the first and aα · a3,β is
the second fundamental form of the shell mid-surface. Hence, the components ααβ measure the straining of the mid-
surface and the components βαβ measure the change in curvature when w = 0. Furthermore, the strain components
αα3 measure the out-of-plane shearing and are zero when w = 0.

2.1. Illustrative comparison of the proposed kinematics with conventional models

In order to provide an illustrative comparison of the various kinematic models, we consider a beam embedded in the
two-dimensional (e1, e3)-plane. The difference between the various beam models concerns the assumed deformation
of the beam cross-section.

2.1.1. Euler-Bernoulli model In the Euler-Bernoulli theory, which corresponds to the Kirchhoff-Love theory for
shells, the deformed configuration is assumed to be

ϕ(θ1, θ2, θ3) = x(θ1) + θ2e2 + θ3a3(θ1) (7)

where x(θ1) = x1(θ1)e1 +x3(θ1)e3 is the deformed axis of the beam, e2 is the direction orthogonal to the (e1, e3)-
plane, a3(θ1) is the normal to the deformed beam axis and θ1 is a path parameter along the beam axis. The normal
a3 is given by

a3(θ1) =
x(θ1),1 × e2

|x(θ1),1 × e2|
(8)

Thus, the deformed configuration depends only on the deformed position vector of the beam axis x

ϕ(θ1, θ2, θ3) = x(θ1) + θ2e2 + θ3 x(θ1),1 × e2

|x(θ1),1 × e2|
(9)

2.1.2. Timoshenko model In the Timoshenko theory, which corresponds to the Reissner-Mindlin theory for shells,
the deformed configuration is assumed to be

ϕ(θ1, θ2, θ3) = x(θ1) + θ2e2 + θ3d(θ1) (10)

In contrast to the Euler-Bernoulli model, the unit-length director d allows transverse shear strains to occur. The director
deformations can be parameterised with a rotation matrixR(χ) which depends on a rotation angle χ(θ1)

d = R(χ)a3 (11)

Consequently, the deformed configuration depends on the deformed beam axis x(θ1) and the rotation angle χ(θ1),
i.e.

ϕ(θ1, θ2, θ3) = x(θ1) + θ2e2 + θ3R (χ)a3 (12)

2.1.3. Proposed model In the new kinematics introduced in Section 2, the deformed configuration is assumed to be

ϕ(θ1, θ2, θ3) = x(θ1) + θ2e2 + θ3 a1 × a2 +w

|a1 × a2 +w|
(13)

The deformed configuration depends on the deformed position vector of the beam axis x(θ1) and the shear vector
w(θ1). This becomes more apparent after expressing the tangent vector a1(θ1) in terms of the beam axis

ϕ(θ1, θ2, θ3) = x(θ1) + θ2e2 + θ3 x(θ1),1 × e2 +w(θ1)

|x(θ1),1 × e2 +w(θ1)|
(14)

Since the shear vector w is unconstrained, transverse shear strains are possible.
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2.1.4. Example: Beam deformation with constant curvature We consider an initially straight cantilever beam whose
reference configuration is described with

ϕ(θ1, θ2, θ3) =

θ1

0
0


︸ ︷︷ ︸
x

+ θ2

0
1
0


︸ ︷︷ ︸
e2

+ θ3

0
0
1


︸ ︷︷ ︸
d = a3

(15)

The beam is deformed into a circular arc with radius R without changing the length of the beam axis and without
applying transverse shear deformations so that the deformed configuration is

ϕ(θ1, θ2, θ3) =


R sin θ1

R

0

R−R cos θ
1

R


︸ ︷︷ ︸

x(θ1)

+ θ2

0

1

0


︸ ︷︷ ︸
e2

+ θ3


− sin θ1

R

0

cos θ
1

R


︸ ︷︷ ︸
d(θ1)

(16)

In the following the out-of-plane shear deformation of the beam according to the different beam models is computed.
To begin with we determine the out-of-plane shear deformation component of the Green-Lagrange strain tensor as
defined for the solid

E13 =
1

2
(g13 − g13) =

1

2

(
ϕ,1 ·ϕ,3 −ϕ,1 ·ϕ,3

)
=

1

2




cos θ
1

R

0

sin θ1

R

+ θ3


− 1
R cos θ

1

R

0

− 1
R sin θ1

R


 ·

− sin θ1

R

0

cos θ
1

R

 = 0 (17)

This result is not surprising considering that the director is equal to the unit normal of the deformed beam axis, i.e.
d = a3. Moreover, the given deformed configuration can be exactly represented with the Bernoulli model in which
the director is assumed to be normal to the deformed beam axis.

For the Timoshenko model, the director is obtained by rotating the normal to the reference beam axis, i.e.
d = R(χ)a3. The degrees of freedom are the deformed beam axis x and the rotation angle χ. For the considered
deformed beam, the out-of-plane shear deformation according to the Timoshenko model is

E13 =
1

2




cos θ
1

R

0

sin θ1

R

+ θ3R(χ),1

0

0

1


 ·
R(χ)

0

0

1


 =

1

2


cos θ

1

R

0

sin θ1

R

 ·
− sinχ

0

cosχ

 (18)

By choosing χ = θ1/R the zero out-of-plane shear deformation of the solid model can be reproduced. In a finite
element discretized Timoshenko model the unknowns are the deformed beam axis x and the rotation angle χ. In
order to reproduce the zero out-of-plane shear deformations the finite element function spaces for x and χ have to be
carefully chosen so that the discretized version of (18) yields zero.

In the proposed kinematic model the degrees of freedom are the deformed beam axis x and the shear vectorw. The
deformed configuration is reproduced if the shear vectorw is set to zero, cf. (14) and (16). In other words, the proposed
kinematics exactly reduces to the Euler-Bernoulli model if no shear deformations are present. As a consequence, in a
finite element context, there is no need to match the finite element function spaces used for discretizing the deformed
beam axis x and the shear vector w.

3. Weak form of equilibrium equations

We consider the potential energy of a hyperelastic shell for deriving the shell equilibrium equations in the weak form

Π(ϕ) = Πint(ϕ) + Πext(ϕ) (19)
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where Πint is the internal and Πext is the external potential energy. At equilibrium configurations the first variation of
the potential energy is zero

δΠ = δΠint + δΠext = 0 (20)

The internal potential energy is the integral of the strain energy density W (E) which is a function of the Green-
Lagrange strain tensor E

Πint(ϕ) =

∫
Ω

∫ t
2

− t
2

W (E(ϕ)) j dθ3 dΩ (21)

Here, the Jacobian j takes into account the curvature of the shell in the integration across the thickness

j =
|(g1 × g2) · g3|
|(a1 × a2) · a3|

(22)

The variation of the internal energy reads

δΠint =

∫
Ω

∫ t
2

− t
2

∂W (E)

∂E
: δEj dθ3 dΩ =

∫
Ω

∫ t
2

− t
2

S : δEj dθ3 dΩ (23)

where S is the second Piola-Kirchhoff stress tensor. After introducing the Green-Lagrange strain (5), the preceding
equation becomes

δΠint =

∫
Ω

∫ t
2

− t
2

S : (δα+ θ3δβ)j dθ3 dΩ (24)

Next, the membrane stress and moment resultants are defined

n =

∫ t
2

− t
2

S j dθ3 (25a)

m =

∫ t
2

− t
2

θ3S j dθ3 (25b)

which enable us to write the variation of the internal energy as an integral over the shell mid-surface

δΠint =

∫
Ω

(n : δα+m : δβ) dΩ (26)

Recall that the independent variables in the new model are the mid-surface position x and the shear vector w. The
variation of the internal energy with respect to the two independent variables is

δΠint =

∫
Ω

[(
n :

∂α

∂x
+m :

∂β

∂x

)
· δx+

(
n :

∂α

∂w
+m :

∂β

∂w

)
· δw

]
dΩ (27)

Next we derive the variation of the external potential energy of the shell. The boundary of the shell consists of the
top, bottom and lateral surfaces of which, for brevity, only the lateral surface [−h/2, h/2] × Γ will be considered.
The external potential energy of the shell with the external body force vector b and the external lateral surface traction
vector f is given by

Πext(ϕ) = −
∫

Ω

∫ t
2

− t
2

b · (x+ θ3d)j dθ3 dΩ−
∫

Γ

∫ t
2

− t
2

f · (x+ θ3d)j dθ3 dΓ (28)

whereby the kinematic assumption (1) has been used. Furthermore, we define the following external force and moment
resultants

p =

∫ t
2

− t
2

bj dθ3 q =

∫ t
2

− t
2

θ3bj dθ3 (29a)

r =

∫ t
2

− t
2

fj dθ3 s =

∫ t
2

− t
2

θ3fj dθ3 (29b)
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Thus, the variation of the external energy with respect to the mid-surface position x and shear vector w can be
expressed as

δΠext = −
∫

Ω

[(
p+ q

∂d

∂x

)
· δx+ q

∂d

∂w
· δw

]
dΩ−

∫
Γ

[(
r + s

∂d

∂x

)
· δx+ s

∂d

∂w
· δw

]
dΓ (30)

Combining the variations of the internal and external energy yields the weak form of the shell equilibrium equations(
∂Πint(x, w)

∂x
+
∂Πext(x, w)

∂x

)
· δx = 0 (31a)(

∂Πint(x, w)

∂w
+
∂Πext(x, w)

∂w

)
· δw = 0 (31b)

Finally, a comment is warranted concerning the Dirichlet boundary conditions. From the expression for the external
potential energy (28) and definitions (29a) and (29b) it can be deduced that the variable conjugate to the external
moments is the director d. This implies that for enforcing rotation boundary conditions the vector a1 × a2 +w has
to be constrained to the prescribed value.

4. Constitutive equations

In this section we briefly summarise the linear elastic material model used. For the proposed shell model it is crucial
that the constitutive equations satisfy the plane stress condition, i.e. have zero through-the-thickness stress. Moreover,
the amount of shear must remain within the limits of Reissner-Mindlin model. As discussed in previous works,
e.g., [7, 24], three-dimensional constitutive models may only be used if the kinematic assumptions include higher
than linear displacements across the thickness.

The internal energy density of a linear elastic isotropic material under plane stress conditions is given by

W (E) =
1

2
E : C : E (32)

where C is a fourth order constitutive tensor

C = Cijkl gi ⊗ gj ⊗ gk ⊗ gl (33)

with components

Cαβλµ =
E

2(1 + ν)

(
gαλgβµ + gαµgβλ +

2ν

1− ν
gαβgλµ

)
(34a)

Cα3λ3 =
E

2(1 + ν)
gαλ (34b)

C3333 = Cαβ33 = 0 (34c)

and Young’s modulus E and Poisson’s ratio ν.
The shell internal energy density in stress resultant form is obtained by introducing the constitutive tensor

components (34) and the shell kinematics (6) into (32) and then integrating across the thickness

W (α, β) =
1

2

Et

1− ν2
Hαβγδααβαγδ +

1

2

Et
3

12(1− ν2)
Hαβγδβαββγδ

+
1

2

κEt

1 + ν
aαβαα3αβ3 +

1

2

κEt
3

12(1 + ν)
aαββα3ββ3

(35)

with
Hαβγδ =

1− ν
2

(aαγaβδ + aαδaβγ) + νaαβaγδ

The shear correction factor κ = 5/6 takes into account that the actual out-of-plane shear strains are not linear and
vanish on top and bottom shell surfaces. Furthermore, note that the derivation of internal energy density in stress
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Figure 2. Control mesh of a car wheel rim (left) and the corresponding limit surface obtained with the Loop’s subdivision scheme
(right).

resultant form (35) contains certain geometric assumptions, such as gij ≈ aij , see e.g. [18] for details. In case of
nonlinear materials it is generally not possible to derive a closed form expression for the internal energy density under
plane stress conditions. However, the plane stress assumption can be iteratively pointwise enforced by requiring

S33 =
∂W (E)

∂E33
= 0 (36)

see [10] for details.

5. Discretization of the shell weak form

In contrast to conventional shear-deformable shell models the proposed kinematics contains the second order
derivatives of the deformed mid-surface. Hence smooth, or more formally H2-conforming, shape functions are
necessary for a conforming finite element discretization. In this work, we use the subdivision surfaces, or more
precisely, the corresponding subdivision shape functions, for the discretization of the shell weak form. This is in
line with our previous work on the discretization of Kirchhoff-Love thin shells with subdivision surfaces [11, 10, 9].

5.1. Brief review of subdivision surfaces

As known splines are only defined on tensor product meshes or, more generally, on meshes with shift-invariant
connectivity. This imposes limitations on the type of meshes that can be used and type of objects that can be
represented with splines. Subdivision is a generic technique for generalising splines to meshes with arbitrary
connectivity [34, 32, 21, 9]. On mesh patches with tensor product or shift-invariant connectivity, subdivision uses the
refinability, or in other words the two-scale relation, of b-splines to generate smooth surfaces by successive refinement
and averaging. The refinability property of b-splines makes it possible to represent a coarse mesh shape function as a
linear combination of shape functions on a finer mesh.

In this work we use Loop’s subdivision scheme [16] which is the generalisation of quartic box-splines to arbitrary
connectivity meshes. Quartic box-splines are defined on shift-invariant three-direction meshes, which in this context
means that the mesh consists only of triangles and that each vertex is connected by six triangles. In contrast to quartic
box-splines, in Loop’s scheme the number of triangles connected to a vertex can be arbitrary and the resulting surface
is at least C1-continuous. In line with other subdivision schemes, Loop’s scheme decomposes each subdivision step
into a refinement and an averaging step. In the refinement step the mesh is refined by quadrisecting the triangles.
Subsequently, the coordinates of each vertex are recomputed as a weighted average of the vertex coordinates of the
neighbouring vertices. In the subdivision literature, the averaging weights are usually given in form of subdivision
masks as shown in Figure 3. The vertex mask is used for recomputing the coordinates of vertices which have already
existed on the coarse mesh. The edge mask is used for computing the coordinates of vertices introduced on the edges
during the quadrisecting. Note that the averaging weights depend only on the connectivity of the mesh and not on the
actual vertex coordinates.
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Figure 3. Vertex and edge masks for standard vertices and edges (i.e., non-boundary and non-corner). The number of triangles
attached to the vertex is the valence v of the vertex. The dashed edge emphasises that the vertex mask applies to vertices with

arbitrary valence.

Figure 4. Masks for computing the two tangent vectors to the limit surface.

The convergence and smoothness properties of subdivision surfaces can also be established without referring to
their spline origin, see [9] for details and references. To this end, subdivision is considered as a linear mapping
from a coarse to a fine mesh. Under some technical conditions, the eigenstructure of the mapping yields masks for
computing the limit position and the tangent plane to the limit surface at the vertices. For example, the two masks
shown in Figure 4 for computing the two tangent vectors t1I and t2I have been determined from the eigenvectors of
the subdivision mapping

t1
I =

v∑
J=0

L1
IJxJ(I) t2

I =

v∑
J=0

L2
IJxJ(I) (37)

with

L1
I0 = 0 L1

IJ = cos

(
2π(J − 1)

v

)
L2

I0 = 0 L2
IJ = sin

(
2π(J − 1)

v

)
where xJ(I) are the vertex coordinates of the finite element mesh in the neighbourhood of node I . The two vectors t1I

and t2I are the tangents to the limit surface and not to the triangular mesh. In the following, the two tangent vectors
will be used for computing the shell normal at the vertices. It is worth emphasising that by using the limit masks only
the surface and its tangents at vertices can be computed.

Subdivision surfaces are parameterised in order to compute quantities, such as the limit position and curvature, at
arbitrary locations, like at quadrature points. As previously pointed out, Loop’s subdivision leads to box-splines on
patches containing only regular vertices. Furthermore, using the well-known correspondence between the box-spline
and Bezier shape functions, on regular patches Bezier shape functions can be used for parameterisation. In practical
terms, on a regular patch, such as shown in Figure 5, the surface within the centre element is interpolated with
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Figure 5. Control patch of a triangular element in the parameter space (left) and in the physical space (right). In the shaded element
only the shape functions associated to the shown vertices are non-zero.

x(θ1, θ2) =

11∑
I=0

N I(θ1, θ2)xI (38)

where N I are the twelve Bezier shape functions and xI are the coordinates of the corresponding vertices. As shown
in [28], irregular patches can be parameterised using Bezier shape functions after sufficient number of subdivisions.
For the purpose of this paper, it is sufficient to know that such a parameterisation is available. For details we refer
to [11, 9].

5.2. Discretized shell weak form

In the assumed shell kinematics (2), the rotation of the director with respect to the deformed mid-surface normal is
parameterised using the shear vector. Moreover, since the length of the director is by definition constrained to unity,
the shear vector can only be a vector with two unknown components. In this section, two alternative discretization
approaches are introduced which differ only in the consideration of the shear vector. In the first approach, the shear
vector has at each finite element node three independent components but an additional director length constraint per
node is introduced. The nodal constraint is enforced using Lagrange multipliers so that each node has in total seven
degrees of freedom. In the second approach, the shear vector is expressed in the local curvilinear convective frame at
each node and has only the two in-plane components as unknowns. This leads to a discretization scheme with only
five degrees of freedom per node.

In both approaches subdivision shape functions are used for interpolating the reference and deformed shell mid-
surface and the shear vector. The interpolation equations within each triangular element are given by

x(θ1, θ2) =

NSP−1∑
I=0

N I(θ1, θ2)xI (39a)

x(θ1, θ2) =

NSP−1∑
I=0

N I(θ1, θ2)xI (39b)

w(θ1, θ2) =

NSP−1∑
I=0

N I(θ1, θ2)wI (39c)

where NSP is the number of vertices in the one-neighbourhood of the triangular element and N I are the subdivision
shape functions. Closed form expressions for shape functions are only available on regular patches. For irregular
patches we have only an algorithm for evaluating the shape functions and their derivatives at arbitrary locations
(θ1, θ2), see [11, 9] for details.

As in conventional finite elements, the partition of unity property of subdivision shape functions allows to write the
shell weak form (20) as the sum of NEL element contributions. In addition, introducing the interpolation equations
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(39) into the weak form (31) leads to a set of discrete equilibrium equations

f̂
I
(xL, wL)

f̃
I
(xL, wL)

 =



NEL−1∑
K=0

∂ΠK
int

∂xI
+

NEL−1∑
K=0

∂ΠK
ext

∂xI

NEL−1∑
K=0

∂ΠK
int

∂wI
+

NEL−1∑
K=0

∂ΠK
ext

∂wI

 = 0 (40)

where the first and second rows represent the local force vectors at node I corresponding to its nodal position and shear
vector, respectively. To be precise, the foregoing summations imply the presence of a mapping between the global (i.e.,
mesh-wide) and local (i.e., element specific) vertex numbering. As an example, the internal force contribution of an
element K to a vertex I is computed with

f̂ int
I K(xL, wL) =

∫
ΩK

(
n :

∂α

∂xI
+m :

∂β

∂xI

)
dΩ (41a)

f̃ int
I K(xL, wL) =

∫
ΩK

(
n :

∂α

∂wI
+m :

∂β

∂wI

)
dΩ (41b)

5.2.1. Lagrange multiplier constrained shear vector The shear vector can be expressed in the global Cartesian
coordinate system so that it has three unknown components at each finite element node

wI = w1
Ie1 + w2

Ie2 + w3
Ie3 (42)

If the shear vector in the interpolation equation (39c) and discrete equilibrium equations (40) is interpreted in the
sense of (42), the resulting system of equations is rank deficient. This is due to the used plane stress constitutive
model, which does not lead to an equilibrium equation across the shell thickness. Therefore, as mentioned above, an
additional constraint equation is introduced in order to constrain the nodal shear vector to the tangential plane of the
mid-surface by enforcing

[t1
I × t2I ] ·wI = 0 (43)

where the two tangent vectors t1I and t2I at node I are computed with the masks given in Section 5.1. In the present
work, the Lagrange multiplier method is used to enforce the constraint equation. The equilibrium equations at vertex
I are augmented as follows


f̂
I
(xL, wL, λL)

f̃
I
(xL, wL, λL)

0

 =



NEL−1∑
K=0

∂ΠK
int

∂xI
+

NEL−1∑
K=0

∂ΠK
ext

∂xI
+

NP∑
K=0

λK
∂[t1

K × t2K ]

∂xI
·wK

NEL−1∑
K=0

∂ΠK
int

∂wI
+

NEL−1∑
K=0

∂ΠK
ext

∂wI
+ λI [t1

I × t2I ]

[t1
I × t2I ] ·wI


= 0 (44)

where λI are the NP Lagrange parameters. There is one Lagrange parameter per vertex so that the total number of
Lagrange parameters is equal to the number of mesh vertices NP .

5.2.2. Local shear vector in convective coordinates The shear vector at node I can be expressed in the convective
coordinate frame defined by the nodal tangent vectors t1I and t2I of the limit surface

wI = w1
I t1

I + w2
I t2

I (45)

The shear vector in the interpolation equation (39c) and discrete equilibrium equations (40) can be interpreted in
the sense of (45). In that case, there is no need for an additional constraint equation. The resulting discretized shell
equations have as unknowns the two local shear vector components and the three displacements of the mid-surface.
The derivation of the corresponding internal force vector and the stiffness matrix can be found in the appendix.
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(a) Mesh type A. (b) Mesh type B.

Figure 6. Two coarse meshes used for the discretization of the plate. The refined meshes are obtained through refinement by
quadrisection of each triangle.

6. Examples

We evaluate the performance of the subdivision shells with the proposed shell kinematics using linear and
geometrically nonlinear examples. First, the focus is on geometrically linear examples to emphasise the seamless
transition from the Reissner-Mindlin to the Kirchhoff-Love shell model regime which is intrinsically present in the
proposed approach. Secondly, the pinched cylinder example shows the applicability of the proposed elements to
geometrically nonlinear problems.

6.1. Square plate

Square plates of different slenderness ratios and with either simply supported or clamped boundaries are subjected to
uniformly distributed loading. The length of the plate is L = 10, the Young’s modulus is E = 1.092 · 106 and the
Poisson’s ratio is ν = 0.3. As shown in Figure 6, two different types of meshes, referred to as type A and type B, are
considered. The type B mesh contains five irregular domain vertices with a valence different from six; whereas the
type A mesh contains no irregular domain vertices. The refined meshes are obtained by repeated quadrisection of the
initial meshes, whereby each refinement step subdivides a triangle into four smaller triangles.

6.1.1. Thin plate with slenderness ratio L/t = 106 In order to investigate the convergence of the proposed elements
in case of extremely thin plates we consider a plate with a slenderness ratio of L/t = 106 is considered. This is a
challenging test case for conventional shear-flexible shell finite elements because of their propensity to shear locking.
Shear locking can be understood as the inability of representing zero out-of-plane shear deformations in case of non-
zero deflections. As well known in engineering, in particular for plates with a high slenderness ratio, the out-of-plane
shear deformations are negligible. This implies that the shear-rigid Kirchhoff solution is a good approximation to the
deformation and stress state in the three-dimensional plate.

The considered plate is computed with clamped as well as simply supported boundary conditions using one, three
and seven Gauss quadrature points per element. The convergence of the error in the maximum deflection is plotted in
Figure 7. The error in the numerical solution is determined with the analytical Kirchhoff series solution of the simply
supported plate 0.00406235266065 · L4/D and the solution of the clamped plate 0.001265319087 · L4/D [31, 30],
where D is the flexural stiffness

D =
Et

3

12(1− ν2)
(46)

Overall, the clamped plate solution is less accurate than the simply supported plate solution because of the more
pronounced boundary effects. The actual convergence rate for the three and five point integration is approximately
two and is in good agreement with the theoretical expected rate NP−2 [29]. In the used Loop subdivision shape
functions the degree of the complete polynomials is three. Although one point integration does not lead to rank-
deficient system matrices, the corresponding results show sub-optimal convergence. A possible reason for this is
the method’s inability to resolve the strong gradients present in the vicinity of the plate corners. In Figure 8, the
convergence of the error in the strain energy for the clamped plate is plotted. According to Taylor et al. [30], the
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(b) Clamped boundary.

Figure 7. Thin plate with L/t = 106 discretized with mesh type A. Convergence of the maximum deflection.

Figure 8. Convergence of the internal energy of the clamped plate with L/t = 106 and discretized with mesh type A.

exact strain energy of the Kirchhoff solution is 0.0003891200775 · L4/D. Again, one point integration shows a sub-
optimal performance, whereas the solutions with three and seven quadrature points converge significantly faster. The
convergence rate of the three quadrature point solution is close to the theoretical expected rate NP−2 [29]. The
flattening out of the three quadrature point convergence curve can be explained with the inherent differences between
the Kirchhoff reference solution and the shear-flexible numerical solution. In order to assess the true convergence of
the presented method it is necessary to compute the error in the strain energy with respect to the shear-flexible analytic
solution.

The convergence of the out-of-plane shear resultant along the plate centre and along the boundary are plotted in
Figures 9 and 10, respectively. As can be seen in Figure 10(a), at the corners of the simply supported plate the shear
resultant exhibits a singularity which represents the Kelvin-Kirchhoff edge resultant force. The asymmetry present
in Figure 10 is an artefact of the plotting software used. It is worth emphasising that in the proposed shell model
out-of-plane shear deformations and stress resultants are directly considered. The shear stress resultant is computed
using the out-of-plane shear strains (6b) and the internal energy density (35). This is in stark contrast to the Kirchhoff
theory where the out-of-plane shear resultant can only be determined using the equilibrium equations.

The convergence of the moments along the plate centre are plotted in Figure 11. For the simply supported case, the
Kirchhoff model yields a maximum moment of 4.79 [31], which agrees well with the converged result. The computed
moment does not exactly decay to zero at the boundary because the stress resultants are evaluated and plotted as
element-wise constant. For the clamped case, the Kirchhoff model yields a clamping moment of 5.13 and a sagging
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(b) Clamped boundary.

Figure 9. Thin plate with L/t = 106 discretized with mesh type A. Convergence of the out-of-plane shear force along the centre
line.
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(b) Clamped boundary.

Figure 10. Thin plate with L/t = 106 discretized with mesh type A. Convergence of the out-of-plane shear force along the
boundary.

moment of 2.31 [31], which agree well with the converged results.

6.1.2. Thick plates In our second set of examples, the convergence of the proposed shell model in case of thick plates
is investigated. The two considered plates have slenderness ratios of L/t = 5 and L/t = 7.1429. In the considered
slenderness regime the out-of-plane shear deformations and the corresponding energies cannot be neglected. In
Table II, the analytic solutions obtained using the three-dimensional linear elasticity equations and the Kirchhoff
model are tabulated [27]. Depending on the slenderness ratio and boundary conditions, the error in the Kirchhoff
solution is between 16.9% and 41.0%. In all cases the analytic solutions obtained with the Kirchhoff model are
smaller than the ones obtained with the elasticity equations. As to be expected, the Kirchhoff model is inadequate for
plates with relatively low slenderness ratios.

In Table III, the results of all our numerical computations are collected. In the simply supported case only the
boundary displacements, i.e. x − x = 0, are prescribed, and in the clamped case in addition to the boundary
displacements the boundary rotations a1 × a2 + w = 0 are prescribed. For prescribing the rotations at the domain
boundaries Lagrange parameters are used. The clamped boundary conditions correspond to the so-called clamped
hard support boundary conditions in conventional shear-deformable plate theories. The tabulated relative errors are
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(b) Clamped boundary.

Figure 11. Thin plate with L/t = 106 discretized with mesh type A. Convergence of the moment along the centre line.

simply supported clamped

L/t = 5 L/t = 7.1429 L/t = 5 L/t = 7.1429

elasticity solution 6.7686 · 10−5 1.7807 · 10−4 2.6686 · 10−5 6.2133 · 10−5

Kirchhoff solution 5.0781 · 10−5 1.4805 · 10−4 1.5752 · 10−5 4.5933 · 10−5

Kirchhoff model error 25.0% 16.9% 41.0% 26.1%

Table II. Thick plates with L/t = 5 and L/t = 7.1429. Comparison of the analytic maximum deflections obtained with three-
dimensional elasticity and shear-rigid Kirchhoff model [27].

simply supported clamped

L/t = 5 L/t = 7.1429 L/t = 5 L/t = 7.1429

mesh type A
1 QP 2.96% 1.92% 26.36% 24.53%
3 QP 1.78% 0.83% 0.48% 0.25%
7 QP 1.77% 0.82% 0.48% 0.24%

mesh type B
1 QP 2.25% 1.13% 17.93% 17.95%
3 QP 1.48% 0.52% 0.40% 0.19%
7 QP 1.39% 0.44% 0.38% 0.17%

Table III. Thick plates with L/t = 5 and L/t = 7.1429. Error in the converged maximum deflection of the shear-flexible
subdivision shell solution.

computed using the respective analytic three-dimensional solutions given in Srinivas et al. [27]. In the computations
two different types of meshes are used: namely type A and type B meshes as shown in Figure 6. Overall, the results
obtained with the shear-flexible subdivision shells are substantially more accurate than the corresponding solutions
obtained with the Kirchhoff model. As in the thin-plate case, the use of one point integration leads to sub-optimal
convergence and, hence, is not advisable for practical computations (see also Section 6.1.1). The numerical results
obtained with three and seven quadrature points converge significantly faster than the one-point quadrature results.

Figures 12 and 13 show the convergence of the error in the maximum deflection for different combinations of
mesh types, slenderness ratios and boundary conditions. Note that the errors are computed with respect to the analytic
three-dimensional solution. Therefore, the given convergence plots are not suitable for extracting the convergence rate
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(b) L/t = 7.1429.

Figure 12. Simply supported thick plates discretized with mesh type A. Convergence of the relative error in maximum deflection.
The relative errors are computed with respect to the corresponding analytical three-dimensional solutions.
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(b) L/t = 7.1429.

Figure 13. Clamped thick plates discretized with mesh type A. Convergence of the relative error in maximum deflection. The
relative errors are computed with respect to the corresponding analytical three-dimensional solutions.

.

of the method. As can be deduced from the convergence plots the shear-flexible subdivision shells are able to provide
highly accurate results with relatively coarse meshes. It is evident from the analytic results in Table II that the standard
shear-rigid subdivision shells are inadequate.

In Figures 16 and 17, the convergence of the out-of-plane shear resultants are given for a simply supported and
clamped plate. The two plots in Figure 16 are for the shear resultant along the centre of the plate, and the two plots
in Figure 17 are for the shear resultants along the boundary of the plate. For the sake of brevity, only the results for
the plate with L/t = 5 have been included. Similar to thin plates, in the simply supported case the shear forces are
focused at the corners. The corresponding shear forces in the clamped case vanish at the corners. Furthermore, the
maximum shear resultant at the corners of the simply supported plate are smaller than corresponding values of a thin
plate. In this context, it is worth recalling that the stress resultants of a Kirchhoff plate are independent of the plate
thickness.
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(b) L/t = 7.1429.

Figure 14. Simply supported thick plates discretized with mesh type B. Convergence of the relative error in maximum deflection.
The relative errors are computed with respect to the corresponding analytical three-dimensional solutions.
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Figure 15. Clamped thick plates discretized with mesh type B. Convergence of the relative error in maximum deflection. The
relative errors are computed with respect to the corresponding analytical three-dimensional solutions.

.

6.2. Circular plate

A uniformly loaded circular plate is considered for comparing the introduced shear-flexible subdivision shells with
other plate finite elements. The radius of the plate is R = 5, the thickness is h = 0.01, Young’s modulus is
E = 10.92 · 106 and Poisson’s ratio is ν = 0. The boundary conditions are clamped hard support. The analytic
solution for this rotationally symmetric example can be found, e.g., in Timoshenko et al. [31]. The analytically
obtained maximum deflection is 10.731 and the strain energy is 140.474.

A representative coarse finite element mesh used in the computations is shown in Figure 18. The relative error in the
maximum deflection with three point quadrature versus the number of nodes is plotted in Figure 19(a). Furthermore,
Figure 19(a) contains the results for the Xu [33] and MITC7 [1] elements, which have been extracted from [6].
Both elements are triangular and are based on the conventional shear-flexible Reissner-Mindlin model. According to
Figure 19(a), the accuracy of the introduced shear-flexible shell is comparable to the Xu element and better than the
MITC7 element. The convergence of the error in the strain energy is plotted in Figure 19(b).
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(b) Clamped boundary.

Figure 16. Thick plate with L/t = 5 discretized with mesh type A. Convergence of the out-of-plane shear force along the centre
line.
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(b) Clamped boundary.

Figure 17. Thick plate with L/t = 5 discretized with mesh type A. Convergence of the out-of-plane shear force along the boundary.

Figure 18. A representative mesh used in the computations.
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(a) Convergence of maximum deflection.
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(b) Convergence of strain energy.

Figure 19. Circular plate.

6.3. Pinched cylinder

The pinched cylinder is a well studied problem and is part of the original shell obstacle course proposed by Belytschko
et al. [2]. The cylinder is loaded with two diametrically opposing unit loads in its middle section. The displacements
and rotations on its both edges are unconstrained. The length of the cylinder is L = 600; the radius is R = 300; the
Young’s modulus is E = 3× 106; and the Poisson’s ratio is ν = 0.3.

The cylindrical shell is a developable surface and can deform in the thin limit without any significant bending
moments. The corresponding analytic membrane series solution can be found, e.g., in [31], which agrees for thin
shells (R/t ' 100) very well with the numerical Kirchhoff-Love solution [11]. According to Timoshenko et al. [31],
the maximum increase in the diameter is

umax =
2R3

πDL

∑
n=2, 4, 6,···

1

(n2 − 1)2
≈ 0.149

R3

2DL
(47)

and the maximum shortening in the diameter is

umin =
2R3

πDL

∑
n=2, 4, 6,···

(−1)n/2+1

(n2 − 1)2
≈ 0.137

R3

2DL
(48)

where the flexural stiffness D is as defined in (46). In the subsequent numerical comparisons n = 200 terms of both
series solutions are used.

To study the approximation quality of the proposed shear-flexible shell model, we computed cylinders with a
slenderness ranging fromR/t = 7.5 toR/t = 100. In Figure 20 the used mesh with 1260 vertices and a representative
deformed limit surface are shown.

In addition to the computations with the proposed shear-flexible shell model, three-dimensional solid computations
with approximately 280000 ten-node tetrahedral elements have been performed. In all the three-dimensional
computations six elements across the shell thickness are used. In Figure 21, the results of the proposed shell model
and three-dimensional computations are plotted. Figure 21(a) depicts the maximum increase in the diameter occurring
at the loading point. Since point loads lead to infinite displacements in three-dimensional elasticity, in Figure 21(a)
only the displacements for the shear-flexible shell are plotted. Moreover, the shear-flexible solution is normalised
with respect to the membrane solution (47), which is only accurate for sufficiently thin shells. For thicker shells the
membrane solution (47) is smaller than the shear-flexible solution. The maximum shortening of the diameter occurring
at the cylinder ends is plotted in Figure 21(b). The computed solutions for the shear-flexible shell as well as three-
dimensional elasticity are included. In general, the shear flexible solution is slightly smaller than the three-dimensional
elasticity solution. Overall, the comparison between the shell and elasticity solutions confirm that the proposed shear-
flexible shell model approximates three-dimensional elasticity better than the conventional Kirchhoff-Love model.
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(a) Representative mesh. (b) Deformed limit surface.

Figure 20. Pinched cylinder.
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Figure 21. Pinched cylinder.

6.4. Pinched hemisphere

We consider the classical example of a hemispherical shell loaded by four point loads acting on its edge [11]. The
radius of the hemisphere is 10; the Young’s modulus is 6.825 × 107; and the Poisson’s ratio is 0.3. On the edge of
the shell the displacements and rotations are unconstrained. The applied loads have a magnitude of 2 and define two
pairs of diametrically opposite loads alternating at 90◦. The slenderness (R/t) ranges from 7.5 to 250. In particular
for slender hemispheres, the deformed shell exhibits almost no membrane strains so this example tests the elements
ability to represent inextensional deformations.

The initial control mesh of the hemisphere is shown in Figure 22(a). The mesh finally used in the computations
has 2113 nodes and is obtained by refining the initial control mesh by successive quadrisection and projecting the
new vertices onto the sphere surface. Figure 22(b) shows the computed deformed limit surface of the t = 0.04
thick hemisphere. In addition to the shell model, a three-dimensional solid model is considered with approximately
180000 ten-node tetrahedral elements. In the discretization of the solid model six elements across the shell thickness
are used. The maximum displacement of the shear-flexible shell solution is plotted normalised with respect to the
three-dimensional solid solution in Figure 23. As evident, for increasingly thinner hemispheres the shear-flexible shell
solution converges towards the solid solution. For thicker hemispheres, the shear-flexible solution can be considered
up to slenderness ratios of R/t ≈ 20 to be sufficiently accurate for most engineering applications.
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(a) Representative mesh. (b) Deformed limit surface.

Figure 22. Pinched hemisphere.

Figure 23. Pinched hemisphere. Maximum displacement of the shell solution normalised with respect to three-dimensional
elasticity solution.

6.5. Nonlinear pinched cylinder

The geometrically nonlinear analysis of a pinched cylinder illustrates the performance of the proposed shear-
flexible subdivision shells in case of large deformations. The deformed cylinder exhibits large inextensional bending
deformations and a complex membrane state, c.f. Figure 25. The length of the cylinder is 10.35; the radius is 4.953;
the thickness is 0.094; the Young’s modulus is 10.5 × 106; and the Poisson’s ratio is 0.3125. The cylinder is loaded
by two diametrically opposing loads in its middle section and at its both ends the displacements and rotations are
unconstrained (see Figure 24(a)). The cylinder has a slenderness ratio of R/t = 52.69, which lies in the thin-thick
transition regime, and it can be expected that the consideration of transverse shear is not crucial.

The cylinder is discretized with a regular mesh consisting of 840 nodes and 1600 elements, which matches the
mesh used by Peric et al. [20]. In Figure 24(b), the load-displacement curves computed with the present method are
compared with the results of Gruttmann et al. [15], Peric et al. [20] and Sansour [24]. The load-displacement curves
are for the points A and B as indicated in Figure 24(a). As evident from Figure 24(b), the load-displacement curves
computed with the shear-flexible subdivision shells are within the range provided by the three reference solutions.

7. Conclusions

We proposed a new shell model and introduced its discretization with subdivision shape functions. The kinematics of
the proposed model can be considered as a special parameterisation of the conventional Reissner-Mindlin kinematics.
The unknown variables are the position vector of the deformed mid-surface and the shear vector for describing the
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A

B

(a) Reference limit surface and loading.

Sansour et al.

(b) Load versus displacement.

Figure 24. Nonlinear pinched cylinder.

(a) Load magnitude 1760. (b) Load magnitude 8920. (c) Load magnitude 40790.

Figure 25. Nonlinear pinched cylinder. Sequence of deformed limit surfaces at increasing load values.

director deformation. The shear vector is a vector with two unknown components and is constrained to lie on the
tangent plane of the mid-surface. The reference and deformed mid-surface and the shear-vector are interpolated using
smooth subdivision shape functions. Thereby, the standard Rayleigh-Ritz formalism is used without resorting to any
auxiliary techniques to treat shear-locking. The new shell elements, referred to as shear-flexible subdivision shells, are
suitable for computing thin as well as thick shells. The convergence and quality of the computed displacement and
stress fields is insensitive with respect to the shell thickness.

Another advantage of the developed subdivision shells is that subdivision surfaces are widely used in computer
graphics and are an upcoming technology in computer aided design. As a result, subdivision surfaces provide an ideal
isogeometric representation framework for analysis and geometric modelling [12]. Moreover, there is already a large
body of work in computer graphics on efficient representation and processing of subdivision surfaces, such as on mesh
adaptivity [14] or Boolean operations [4], which can be directly utilised in analysis software.



SHEAR-FLEXIBLE SUBDIVISION SHELLS 23

APPENDIX

In this appendix, we provide a step-by-step derivation of the internal force vector and stiffness matrix of the proposed
shell model with five degrees of freedom. Each node has as degrees of freedom three coordinates (or displacements)
and two local components of the shear vector. First explicit expressions are provided for the derivatives of the mid-
surface vectors, shell director and strain variables. Subsequently, these expressions are combined to yield the internal
force vector. Last, the stiffness matrix of the shell is derived.

II. Mid-surface vector and shell director derivatives

According to equation (39b), within each element the current configuration of the mid-surface is interpolated with

x(θ1, θ2) = N I(θ1, θ2)xI = N II · xI = N I · xI

where N I is a 3-by-3 diagonal matrix containing the shape functions N I . Here and in the following, the summation
over the nodal indices I has been omitted for brevity. The base vectors of the discretized mid-surface and their
derivatives are computed with

aα = x,α = N ,α
I · xI and aα,β = x,αβ = N ,αβ

I · xI (50)

Their differentiation with respect to the nodal positions yields
∂aα
∂xI

= x,α = N ,α
I and

∂aα,β
∂xI

= N ,αβ
I (51)

Next, the derivatives of the shell director with respect to the nodal degrees of freedom are considered. To write the
subsequent derivations in a more compact form, we introduce a non-unit normal and its gradient

z = a1 × a2 = A1 · a2 = −A2 · a1 (52)
z,β = a1,β × a2 + a1 × a2,β = A1,β · a2 +A1 · a2,β (53)

where the matricesAα andAα,β are the skew-symmetric matrices of the vectors aα and aα,β , respectively. We obtain
for their derivatives with respect to the nodal positions

∂z

∂xI
= −A2 ·N ,1

I +A1 ·N ,2
I = ẐI (54)

∂z,β
∂xI

= −A2 ·N ,1β
I +A1β ·N ,2

I +A1 ·N ,2β
I −A2β ·N ,1

I = Ẑ,β
I (55)

The shear vector is discretized with
w =

∑
I
N I(θ1, θ2) tγ

I wγI (56)

The nodal tangent vectors tγJ are determined according to (37) in which the superscript J indicates the node. As
presented in (37), the tangent vectors tγJ depend on the vertex co-ordinates xI(J) of the neighbouring vertices. This
relation is denoted with tγJ =

∑
I Lγ

JIxI(J) or in matrix notation tγJ = Lγ
JI ·xI with constantLγJI = Lγ

J I(J)I
in which the J-wise neighbouring index I(J) is replaced with its absolute index I . The shear vectorw can be written
as

w =
∑

I
N Itγ

IwγI =
∑

I
(N Itγ

I ⊗ tγI) ·wI = W̃ I ·wI (57)

where the two components of the nodal shear vector are addressed with wγI = tγI · wI . The gradient of the shear
vector is

w,β =
∑

I
N,β

Itγ
IwγI =

∑
I
(N,β

Itγ
I ⊗ tγI) ·wI = W̃ ,β

I ·wI (58)

and its derivatives with respect to the nodal unknowns are
∂w

∂xI
=
∑

J
wαJN

JLα
JI = Ŵ I and

∂w

∂wI
= W̃ I (59)

∂w,β

∂xI
=
∑

J
wαJN,β

JLα
JI = Ŵ ,β

I and
∂w,β

∂wI
= W̃ ,β

I (60)
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Note that a hat indicates a matrix holding a derivative with respect to the nodal coordinates xI , while a tilde indicates
a matrix holding a derivative with respect to nodal shear vector wI .

Furthermore, we define the non-unit director

v = a1 × a2 +w = z +w (61)

The derivative of v and v,β with respect to the nodal unknowns can be expressed using the definitions in equations
(54), (55), (59) and (60)

∂v

∂xI
= ẐI + Ŵ I = V̂ I and

∂v

∂wI
= W̃ I = Ṽ I (62)

∂v,β
∂xI

= Ẑ,β
I + Ŵ ,β

I = V̂ ,β
I and

∂v,β
∂wI

= W̃ ,β
I = Ṽ ,β

I (63)

Here, the matrices W̃ I and W̃ ,β
I are re-labelled to preserve the naming pattern in regard to derivatives to follow.

Next, we introduce an auxiliary vector

sβ =
v,β
|v|

(64)

with the derivatives
∂sβ
∂xI

=
1

|v|

[
V̂ ,β

I − sβ ⊗
(
d · V̂ I

)]
= Ŝβ

I (65)

∂sβ
∂wI

=
1

|v|

[
Ṽ ,β

I − sβ ⊗
(
d · Ṽ I

)]
= S̃β

I (66)

The auxiliary vector sβ permits to, eventually, express the derivatives of the director and its gradient with respect to
nodal degrees of freedom with

∂d

∂xI
=

1

|v|

[
V̂ I − d⊗

(
d · V̂ I

)]
= D̂I (67)

∂d

∂wI
=

1

|v|

[
Ṽ I − d⊗

(
d · Ṽ I

)]
= D̃I (68)

and
∂d,β
∂xI

=
[
Ŝβ

I − d⊗
(
sβ · D̂I + d · ŜβI

)
−
(
d · sβ

)
D̂I
]

= D̂,β
I (69)

∂d,β
∂wI

=
[
S̃β

I − d⊗
(
sβ · D̃I + d · S̃βI

)
−
(
d · sβ

)
D̃I
]

= D̃,β
I (70)

III. Strain derivatives

The derivatives of the membrane and bending strain components (6) with respect to the nodal degrees of freedom are
expressed using the definitions of preceding Appendix II

∂ααβ
∂xI

=
1

2

(
aβ ·N ,α

I + aα ·N ,β
I
)

= âαβ
I (71a)

∂αα3

∂xI
=
∂α3α

∂xI
=

1

2

(
d ·N ,α

I + aα · D̂I
)

= âα3
I (71b)

∂αα3

∂wI
=
∂α3α

∂wI
=

1

2

(
aα · D̃I

)
= ãα3

I (71c)

∂βαβ
∂xI

=
1

2

(
d,β ·N ,α

I + aα · D̂,β
I + d,α ·N ,β

I + aβ · D̂,α
I
)

= b̂αβ
I (71d)

∂βαβ
∂wI

=
1

2

(
aα · D̃,β

I + aβ · D̃,α
I
)

= b̃αβ
I (71e)
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IV. Equilibrium equations and linearisation

Following equation (31), the discrete equilibrium equations (40) are recalledf̂ int
I(xJ ,wJ)− f̂ ext

I(xJ ,wJ)

f̃ int
I(xJ ,wJ)− f̃ ext

I(xJ ,wJ)

 = 0 (72)

in which a dependency of the internal and external nodal forces on the current configuration is indicated. However, in
the following paragraphs the derivations of the external nodal forces are not considered.

The internal forces (27) can be expressed with the strain derivatives (71), i.e.

f̂ int
I =

∫
Ω

(
nαβ âαβ

I + 2nα3 âα3
I +mαβ b̂αβ

I
)
dΩ (73)

f̃ int
I =

∫
Ω

(
2nα3 ãα3

I +mαβ b̃αβ
I
)
dΩ (74)

Likewise, the discretization of the expression of the external forces (30) yields

f̂ ext
I =

∫
Ω

(
p ·N I + q · D̂I

)
dΩ +

∫
Γ

(
r ·N I + s · D̂I

)
dΓ (75)

f̃ ext
I =

∫
Ω

(
q · D̃I

)
dΩ +

∫
Γ

(
s · D̃I

)
dΓ (76)

The nodal equilibrium (72) is a set of nonlinear algebraic equations. Next, we proceed to the derivation of the
corresponding stiffness matrix

̂̂kIJ ˜̂
kIJ

̂̃
kIJ

˜̃
kIJ

 =


∂
(
f̂ int

I(xJ ,wJ)− f̂ ext
I
)

∂xJ

∂
(
f̂ int

I(xJ ,wJ)− f̂ ext
I
)

∂wJ

∂
(
f̃ int

I(xJ ,wJ)− f̃ ext
I
)

∂xJ

∂
(
f̃ int

I(xJ ,wJ)− f̃ ext
I
)

∂wJ

 (77)

The contribution of the internal forces to the stiffness matrix consists of

∂f̂ int
I

∂xJ
=

∫
Ω

(
âαβ

I ⊗ ∂nαβ

∂xJ
+ 2âα3

I ⊗ ∂nα3

∂xJ
+ b̂αβ

I ⊗ ∂mαβ

∂xJ

)
dΩ

+

∫
Ω

(
nαβ

∂âαβ
I

∂xJ
+ 2nα3 âα3

I

∂xJ
+mαβ b̂αβ

I

∂xJ

)
dΩ

(78a)

∂f̂ int
I

∂wJ
= =

∫
Ω

(
âαβ

I ⊗ ∂nαβ

∂wJ
+ 2âα3

I ⊗ ∂nα3

∂wJ
+ b̂αβ

I ⊗ ∂mαβ

∂wJ

)
dΩ

+

∫
Ω

(
nαβ

∂âαβ
I

∂wJ
+ 2nα3 âα3

I

∂wJ
+mαβ b̂αβ

I

∂wJ

)
dΩ

(78b)

∂f̃ int
I

∂xJ
=

∫
Ω

(
2ãα3

I ⊗ ∂nα3

∂xJ
+ b̃αβ

I ⊗ ∂mαβ

∂xJ

)
dΩ +

∫
Ω

(
2nα3 ãα3

I

∂xJ
+mαβ b̃αβ

I

∂xJ

)
dΩ (78c)

∂f̃ int
I

∂wJ
=

∫
Ω

(
2ãα3

I ⊗ ∂nα3

∂wJ
+ b̃αβ

I ⊗ ∂mαβ

∂wJ

)
dΩ +

∫
Ω

(
2nα3 ãα3

I

∂wJ
+mαβ b̃αβ

I

∂wJ

)
dΩ (78d)

In case of a Saint Venant-Kirchhoff material, see Section 4, the derivatives of the stress resultants with respect to the
nodal degrees of freedom take a particularly simple form

∂nij

∂xJ
= t̄ Cijkl âkl

J and
∂nij

∂wJ
= t̄ Cijkl ãkl

J

∂mij

∂xJ
=
t̄3

12
Cijkl b̂kl

J and
∂mij

∂wJ
=
t̄3

12
Cijkl b̃kl

J

(79)
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To evaluate the stiffness matrix components (78), the second derivatives of the strain components with respect to the
nodal degrees of freedom are needed, which are

2
∂âαβ

I

∂xJ
= N ,α

I ·N ,β
J +N ,β

I ·N ,α
J (80a)

2
∂âα3

I

∂xJ
= N ,α

I · D̂J + D̂I ·N ,α
J + aα ·

̂̂
DIJ (80b)

2
∂b̂αβ

I

∂xJ
= N ,α

I · D̂,β
J + D̂,β

I ·N ,α
J + aα ·

̂̂
D,β

IJ (80c)

+N ,β
I · D̂,α

J + D̂,α
I ·N ,β

J + aβ ·
̂̂
D,α

IJ

The mixed derivatives of the strain components with respect to the nodal coordinates and the shear vector are

2
∂âα3

I

∂wJ
= N ,α

I · D̃J + aα ·
˜̂
DIJ (80d)

2
∂b̂αβ

I

∂wJ
= N ,α

I · D̃,β
J + aα ·

˜̂
D,β

IJ +N ,β
I · D̃,α

J + aβ ·
˜̂
D,α

IJ (80e)

2
∂ãα3

I

∂xJ
= D̃IT ·N ,α

J + aα ·
̂̃
DIJ (80f)

2
∂b̃αβ

I

∂xJ
= D̃,β

IT ·Nα
J + aα ·

̂̃
D,β

IJ + D̃,α
IT ·Nβ

J + aβ ·
̂̃
D,α

IJ (80g)

Finally, the second derivatives of the strain components with respect to the nodal shear vector are

2
∂ãα3

I

∂wJ
= aα ·

˜̃
DIJ (80h)

2
∂b̃αβ

I

∂wJ
= aα ·

˜̃
D,β

IJ + aβ ·
˜̃
D,α

IJ (80i)

In the preceding equations additional hat and tilde are used to denote second derivatives with respect to nodal
positions and shear vectors, respectively. Importantly, the second derivatives of the unit-length thickness director

and its covariant gradient, e.g. ̂̃DIJ and ̂̃
D,β

IJ , are both third-order tensors. In the equations (80), the third order
tensors appear always multiplied with a vector. In the following derivations, we denote the additional vector with a
dummy vector y which in most cases represents a tangent base vector aα and in a few the thickness director d.

To compute the second derivatives y · ̂̃DIJ , y · ̂̃D,β
IJ , etc., intermediate steps are taken to deal with the second

derivatives of the auxiliary mid-surface vectors z, v and sβ defined in Appendix II. The second derivative of the
non-unit normal z = a1 × a2 and its gradient z,β with respect to the nodal positions are

y · ̂̂ZIJ = y · ∂Ẑ
I

∂xJ
= −N ,1

I · Y ·N ,2
J +N ,2

I · Y ·N ,1
J

y · ̂̂Z,βIJ = y · ∂Ẑ,β
I

∂xJ
= −N ,1β

I · Y ·N ,2
J +N ,2

I · Y ·N ,1β
J

+N ,2β
I · Y ·N ,1

J −N ,1
I · Y ·N ,2β

J

(81)

in which Y is the skew-symmetric matrix of the dummy vector y, i.e. Y · c = y × c.
The second derivatives of the shear vector w with respect to the nodal degrees of freedom are given by

y · ̂̂W IJ = 0 and y · ˜̂W IJ = (NJy ·LγJI)⊗ tγJ

y · ̂̃W IJ = tγI ⊗ (N Iy ·LγIJ) and y · ˜̃W IJ = 0

(82)
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The non-zero second derivatives of w,β then are

y · ˜̂W ,β
IJ = (N,β

Jy ·LγJI)⊗ tγJ (83)

y · ̂̃W ,β
IJ = tγI ⊗ (N,β

Iy ·LγIJ) (84)

The second derivatives of the non-unit director v = z +w with respect to the nodal coordinates and shear vector are
given by ̂̂

V IJ =
̂̂
ZIJ , ˜̂

V IJ =
˜̂
W IJ , ̂̃

V IJ =
̂̃
W IJ and ˜̃

V IJ = 0 (85)

The second derivatives of of v,β then arê̂
V ,β

IJ =
̂̂
Z,β

IJ , ˜̂
V ,β

IJ =
˜̂
W ,β

IJ , ̂̃
V ,β

IJ =
̂̃
W ,β

IJ and ˜̃
V ,β

IJ = 0 (86)

The last two lines of equations are simply renamed matrices obtained for the non-unit normal z and the shear vector
w. With these definitions the second derivative of the auxiliary vector sβ = v,β/|v| with respect to the shear vector
is given by

y · ̂̃SβIJ =
1

|v|

[
−
(
y · S̃βI

)
⊗
(
d · V̂ J

)
−
(
d · Ṽ I

)
⊗
(
y · ŜβJ

)]
+

1

|v|

[
y · ̂̃V ,β

IJ −
(
y · sβ

)(
Ṽ IT · D̂J + d · ̂̃V IJ

)] (87)

The other second derivatives of the auxiliary vector, i.e. y · ̂̂SβIJ , y · ˜̂SβIJ and y · ˜̃SβIJ , can be determined with (87)
by appropriately combining the terms with ‘̂’ and ‘˜’ symbols.

Eventually, the second derivatives of unit-length thickness director can be written as

y · ̂̃DIJ =
1

|v|

[
−
(
y · D̃I

)
⊗
(
d · V̂ J

)
−
(
d · Ṽ I

)
⊗
(
y · D̂J

)]
+

1

|v|

[
y · ̂̃V IJ −

(
y · d

)(
Ṽ IT · D̂J + d · ̂̃V IJ

)] (88)

and
y · ̂̃D,β

IJ = y · ̂̃SβIJ − (sβ · D̃I + d · S̃βI
)
⊗
(
y · D̂J

)
−
(
y · d

) (
D̃IT · ŜβJ + sβ ·

̂̃
DIJ + S̃β

IT · D̂J + d · ̂̃SβIJ)
−
(
y · D̃I

)
⊗
(
sβ · D̂J + d · ŜβJ

)
−
(
d · sβ

)(
y · ̂̃DIJ

) (89)

Again, the various combinations of ‘̂’ and ‘˜’ in (88) and (89) lead to y · ̂̂DIJ , y · ˜̂DIJ and y · ˜̃DIJ , as well as,

y · ̂̂D,β
IJ , y · ˜̂D,β

IJ and y · ˜̃D,β
IJ .
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